Demam Berdarah Dengue (DBD) adalah salah satu masalah kesehatan masyarakat yang utama di Indonesia. Jumlah kasus DBD semakin bertambah seiring dengan laju pertumbuhan mobilitas dan populasi manusia. Radial basis function neural network (RBFNN) pada tugas akhir ini diimplementasikan untuk prediksi jumlah insiden mingguan DBD di DKI Jakarta. RBFNN adalah salah satu feed forward neural neworks yang hanya memiliki satu lapisan tersembunyi. Lapisan tersembunyi pada RBFNN dikonstruksi oleh sebuah fungsi aktivasi. K-means clustering digunakan untuk menunjang peforma dari RBFNN, yaitu untuk menentukan pusat dan lebar dari fungsi aktivasi yang digunakan. Performa dari RBFNN dilihat dari RMSE yang dihasilkan pada data training dan data testing. Dari implementasi yang dilakukan, dapat diperoleh bahwa pemilihan struktur atau model RBFNN sangat berpengaruh terhadap hasil prediksi yang diperoleh. Pada tugas akhir ini, RBFNN mampu memprediksi insiden mingguan DBD di DKI Jakarta dengan cukup baik tetapi RBFNN belum dapat menjakau data yang melonjak tinggi pada data testing.
Dengue Hemorrhagic Fever (DHF) is one of the main public health problems in Indonesia. The number of DHF cases and the spread of this disease is increasing along with mobility and population density. Radial basis function neural network (RBFNN) in this final project is implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN in this final project was implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN is a feed forward neural network model that has a single hidden layer. The hidden layer of RBFNN is constructed by an activation function. K-means clustering algorithm is used to improve the performance of RBFNN to determine the center and width of the activation function. The performance of RBFNN can be seen from the RMSE generated in the training data and testing data. From the implementation, it can be obtained that the choice of RBFNN structure or model is very influential on the predicted results obtained. In this final project, RBFNN is able to predict the weekly incidence of DHF in DKI Jakarta quite well but RBFNN has not been able to predict well the data that soared in the testing data.
"Insiden Demam Berdarah Dengue (DBD) terjadi pertama kali di Indonesia pada tahun 1968. DBD adalah penyakit yang disebabkan oleh infeksi virus dengue dan disebarkan oleh nyamuk Aedes aegypti. World Health Organization (WHO) menyatakan bahwa Indonesia adalah negara dengan kasus DBD tertinggi di Asia Tenggara. Pada awal tahun 2019 tercatat jumlah penderita DBD sebesar 13.683 penderita, dilaporkan dari 34 Provinsi, termasuk Provinsi DKI Jakarta. Pada Skripsi ini, jumlah insiden DBD di DKI Jakarta diprediksi menggunakan Elman Neural Network (ENN) dan modifikasi dari ENN, yaitu Piecewise Weighted-Gradient Regularized Elman Neural Network (PWRENN). ENN dan PWRENN dipilih karena memiliki koneksi bolak-balik dan memori untuk menyimpan hasil perhitungan sebelumnya. Memori ini meningkatkan hasil prediksi menjadi lebih akurat dibandingkan model Neural Network yang tidak memiliki koneksi bolak-balik. Prediksi dihasilkan berdasarkan jumlah insiden dan faktor cuaca sebelumnya yang terdiri atas rata-rata temperatur udara, rata-rata kelembapan relatif, dan curah hujan. Model yang dibentuk dievaluasi dengan Root Mean Squared Error (RMSE). Pada Skripsi ini, prediksi insiden DBD terbaik di wilayah Jakarta Barat, Jakarta Pusat, Jakarta Selatan, Jakarta Timur, dan Jakarta Utara dihasilkan oleh model PWRENN dengan RMSE pada data testing berturut-turut sebesar 1,02370, 0,94291, 2,15366, 2,79465, dan 2,25341.
The incidence of Dengue Hemorrhagic Fever (DHF) first occurred in Indonesia in 1968. DHF is a disease caused by dengue virus infection and spread by the Aedes aegypti mosquito. World Health Organization (WHO) states that Indonesia is a country with the highest DHF cases in Southeast Asia. In early 2019 the number of DHF patients was recorded at 13,683, reported from 34 provinces, including DKI Jakarta. In this research, the number of DHF incidents in DKI Jakarta is predicted using Elman Neural Network (ENN) and modification of ENN, namely Piecewise Weighted-Gradient Regularized Elman Neural Network (PWRENN). ENN and PWRENN were chosen because they have recurrent connections and memory to store the results of previous calculations. This memory improves the prediction results to be more accurate than Neural Network models without recurrent connections. Prediction is generated based on the number of previous incidents and previous weather factors consisting of average air temperature, average relative humidity, and rainfall. The model formed was evaluated by Root Mean Squared Error (RMSE). In this research, the best prediction of the DHF incidents in the West Jakarta, Central Jakarta, South Jakarta, East Jakarta, and North Jakarta regions is generated by the PWRENN model with RMSE on testing data respectively 1,02370, 0,94291, 2,15366, 2,79465, dan 2,25341.
"