https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Komparasi fungsi aktivasi dalam prediksi demam berdarah dengue di DKI Jakarta dengan menggunakan neural network = Comparing activation functions in predicting dengue hemorrhagic fever cases in DKI Jakarta using recurrent neural networks

Yuda Sukama; Bevina Desjwiandra Handari, supervisor; Dipo Aldila, supervisor; Siti Aminah, examiner; Alhadi Bustamam, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Demam Berdarah Dengue (DBD) adalah penyakit yang disebabkan oleh virus dengue dan tersebar melalui gigitan vektor nyamuk betina Aedes Aegepty dan Aedes Albopictus yang terinfeksi. Menurut penelitian Luz et al. (2008), machine learning dapat melakukan prediksi insiden DBD secara akurat menggunakan data historis insiden DBD. Pada skripsi ini, salah satu metode machine learning yaitu Recurrent Neural Network (RNN) digunakan untuk memprediksi insiden DBD di DKI Jakarta dengan menggunakan data historis kasus DBD dari tahun 2009 hingga 2017. RNN adalah salah satu neural network yang memiliki recurrent hidden state yang diaktivasi menggunakan data masa kini dengan data masa lampau. RNN cukup sesuai untuk prediksi data yang bersifat timeseries. Sebelum diimplementasikan pada model RNN, data insiden DBD di lima Kotamadya di DKI Jakarta akan dinormalisasi terlebih dahulu. Dalam implementasi model RNN tersebut digunakan beberapa fungsi aktivasi seperti fungsi sigmoid, tanh, dan ReLU. Selanjutnya dibandingkan hasil prediksi dari fungsi-fungsi aktivasi tersebut untuk menentukan fungsi aktivasi apa yang dapat menghasilkan tingkat akurasi terbaik. Berdasarkan data dan model yang digunakan, diperoleh hasil bahwa fungsi aktivasi sigmoid dapat memberikan hasil yang lebih baik pada model RNN dibandingkan dengan fungsi aktivasi tanh dan ReLU. Diharapkan, hasil penelitian ini dapat memberikan prediksi insiden DBD di DKI Jakarta yang dapat digunakan sebagai masukkan yang bermanfaat bagi pihak yang berwenang dalam penanganan penyebaran DBD di DKI Jakarta.

Dengue Hemorrhagic Fever (DHF) is a disease caused by the dengue virus and is spread through the bites of infected female mosquito vectors Aedes Aegepty and Aedes Albopictus. According to research by Luz et al in 2008, machine learning can accurately predict dengue incidence using historical data on dengue incidents. In this thesis, one of the machine learning methods, namely the Recurrent Neural Network (RNN) is used to predict the incidence of dengue fever in DKI Jakarta by using historical data on dengue cases from 2009 to 2017. RNN is a neural network that has a recurrent hidden state that is activated using present data with past data. RNN is quite suitable for prediction of timeseries data. Before being implemented in the RNN model, dengue incidence data in five municipalities in DKI Jakarta will be normalized first. In implementing the RNN model, several activation functions are used, such as the sigmoid function, tanh, and ReLU. Furthermore, the predicted results of the activation functions are compared to determine what activation function can produce the best level of accuracy. Based on the data and models used, the results show that the sigmoid activation function can give better results in the RNN model compared to the tanh and ReLU activation functions. Hopefully, the results of this study can provide predictions of dengue incidence in DKI Jakarta which can be used as useful input for the authorities in handling the spread of DHF in DKI Jakarta.

 File Digital: 1

Shelf
 S-Yuda Sukama.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xix, 76 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-22-17610980 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20509902
Cover