Menurut WHO, Demam Berdarah Dengue (DBD) adalah salah satu penyakit yang paling umum terjadi di negara tropis seperti Indonesia dan sering berakibat fatal dalam kesehatan. DBD juga termasuk penyakit menular dengan nyamuk Aedes aegypti sebagai vektor penyebar utama. Faktor cuaca seperti temperatur, curah hujan dan kelembapan secara tidak langsung mempengaruhi penyebaran DBD. Memprediksi angka insiden Demam Berdarah dapat membantu pihak-pihak yang terkait seperti Dinas Kesehatan Daerah dalam membuat kebijakan dan rencana pencegahan sehingga menekan penyebaran DBD di masyarakat. Pada tugas akhir ini, angka insiden Demam Berdarah Dengue diprediksi dengan salah satu metode machine learning yaitu Restricted Boltzmann Machine - Backpropagation Neural Network (RBM-BPNN). RBM digunakan untuk mengatasi masalah dari BPNN, yaitu untuk menginisialisasi nilai awal bobot koneksi dan bias. Fungsi aktivasi yang digunakan adalah fungsi sigmoid. Terdapat 12 kombinasi hyperparameter yaitu kombinasi jumlah neuron hidden 3, 4, dan 5 dengan nilai learning rate 0,1; 0,05; 0,025; dan 0,01. Data yang digunakan adalah data temperatur, curah hujan, kelembapan serta angka insiden DBD sebelumnya untuk 5 kota madya di DKI Jakarta yang telah disesuaikan dengan time lag berdasarkan korelasinya dengan angka insiden. Kinerja model-model tersebut dibandingkan berdasarkan Root Mean Squared Error (RMSE). Pada tugas akhir ini, model terbaik untuk setiap kota madya memiliki hyperparameter yang berbeda. Model terbaik dari Jakarta Utara, Jakarta Selatan, Jakarta Barat, Jakarta Timur, dan Jakarta Pusat berturut-turut adalah 5 hidden neurons (HN) dengan learning rate (LR) 0,05; 4 HN dengan LN 0,025; 3 HN dengan LR 0,1; 5 HN dengan LR 0,1; dan 4 HN dengan LR 0,05. Nilai RMSE testing sebelum dan setelah denormalisasi dari Jakarta Utara, Jakarta Selatan, Jakarta Barat, Jakarta Timur, dan Jakarta Pusat yang dihasilkan dari model terbaik masing-masing adalah 0,16489 dan 8,739212; 0,11142 dan 14,14996; 0,13482 dan 17,25659; 0,1375318 dan 13,75318; serta 0,1278963 dan 8,313258
According to the WHO, Dengue Hemorrhagic Fever (DHF) is one of the most common diseases occurring in tropical countries such as Indonesia and is often fatal in health. DHF is also an infectious disease with Aedes aegypti mosquitoes as the primary vector. Weather factors such as temperature, rainfall, and humidity indirectly affect the spread of DHF. Predicting the incidence of dengue fever can help related parties such as the regional health department in making policies and prevention plans to suppress the spread of DHF in the community. In this final assignment, the DHF incident number is predicted by a machine learning method that is Restricted Boltzmann Machine-Backpropagation Neural Network (RBM-BPNN). RBM is used to overcome BPNNs problem of initializing values of connection weights and biases. The activation function used is the sigmoid function. There are 12 combinations of hyperparameter, namely the combination of the number of hidden neurons 3, 4, and 5 with the values of learning rate 0.1; 0.05; 0.025; and 0.01. The data used are temperature, rainfall, humidity, and previous DHF incident numbers for five regions in DKI Jakarta that have been adjusted with time lag based on their correlation with the incident number. The performances of these models are compared based on their Root Mean Squared Error (RMSE) training and RMSE testing. On this final assignment, the best model for each region has different hyperparameters. The best models of North Jakarta, South Jakarta, West Jakarta, East Jakarta, and Central Jakarta are 5 hidden neurons with learning rate 0.05, 4 hidden neurons with learning rate 0.025, 3 hidden neurons with learning rate 0.1, 5 hidden neurons with learning rate 0.1, and 4 hidden neurons with learning rate 0.05, respectively. The RMSE testing results before and after denormalizing data for North Jakarta, South Jakarta, West Jakarta, East Jakarta, and Central Jakarta given by the best model of each cities are 0.16489 and 8.739212, 0.11142 and 14.14996, 0.13482 and 17.25659, 0.1375318 and 13.75318, and 0.1278963 and 8.313258.