Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 227563 dokumen yang sesuai dengan query
cover
Ferdian Maulana Akbar
"Artificial Intelligence (AI) didefinisikan sebagai teknologi yang memungkinkan mesin untuk dapat meniru berbagai keterampilan kompleks dari manusia di mana penggunaannya memiliki potensi yang besar. AI dapat digunakan salah satunya di tempat kerja untuk membantu menyelesaikan pekerjaan yang ada. Namun, tentunya dengan adanya penggunaan AI di tempat kerja menghadirkan kekhawatiran seperti contohnya dapat digantikannya manusia dengan AI. Berdasarkan masalah tersebut, terdapat akar masalah yang diidentifikasi yaitu adanya opini negatif yang berkembang di masyarakat tentang dampak penggunaan AI di tempat kerja. Oleh sebab itu, dilakukan analisis sentimen terhadap opini masyarakat pada penelitian ini yang bertujuan untuk mengetahui model terbaik untuk mengklasifikasikan sentimen, topik-topik yang menjadi pembahasan dalam masing-masing sentimen, perubahan tren sentimen seiring waktu, dan rekomendasi yang dapat diberikan pada pihak terkait berdasarkan analisis. Data yang digunakan pada penelitian ini merupakan data Twitter yang berupa tweets yang membahas tentang penggunaan AI di tempat kerja dengan periode Januari 2022 sampai Mei 2024. Metode analisis yang digunakan pada penelitian ini adalah metode machine learning untuk analisis sentimen dan Latent Dirichlet Allocation (LDA) untuk pemodelan topik. Kontribusi teoritis penelitian ini adalah pengembangan analisis sentimen dan pemodelan topik pada tweets yang membahas tentang penggunaan AI khususnya di tempat kerja. Analisis menghasilkan model dengan algoritme Logistic Regression (LR) sebagai model dengan performa terbaik. Selain itu, hasil juga menunjukkan terdapat beberapa topik utama yang dibahas pada masing-masing sentimen dengan terdapatnya 10 topik pada sentimen negatif, 10 topik pada sentimen positif, dan 5 topik pada sentimen netral. Pada analisis tren terdapat beberapa temuan seperti sentimen netral dengan fluktuasi yang cukup stabil dan sentimen positif dan negatif yang memiliki fluktuasi tinggi pada bulan-bulan tertentu. Rekomendasi untuk dapat meredakan opini buruk dan kekhawatiran masyarakat dan pekerja dengan adanya AI di tempat kerja dapat dibuat regulasi dan hukum yang spesifik mengenai penggunaan AI di tempat kerja berdasarkan dari hal-hal yang menjadi topik pembicaraan pada sentimen negatif. Lalu, masyarakat juga dapat menggunakan AI di tempat kerja dengan bertanggung jawab. Selain itu, pemberi kerja juga dapat melakukan adaptasi teknologi dengan bijak dan menerapkan aturan dalam internal perusahan untuk dapat menjaga data internal perusahaan.

Artificial Intelligence (AI) is defined as a technology that enables machines to mimic various complex human skills, with significant potential for its applications. One notable use of AI is in the workplace to assist in completing tasks. However, the use of AI in the workplace raises concerns, such as the potential for AI to replace human workers. Based on this issue, a core problem identified is the negative perception prevalent in society about the impact of AI in the workplace. Therefore, this research conducts a sentiment analysis of public opinion to determine the best model for classifying sentiments, identify the main topics discussed within each sentiment, analyze the trend changes in sentiments over time, and provide recommendations to relevant stakeholders based on the analysis. The data used in this research consists of Twitter data, specifically tweets discussing the use of AI in the workplace, spanning from January 2022 to May 2024. The analytical methods employed in this research include machine learning techniques for sentiment analysis and Latent Dirichlet Allocation (LDA) for topic modeling. The theoretical contribution of this research is the development of sentiment analysis and topic modeling for tweets discussing the use of AI specifically in the workplace. The analysis results identified the Logistic Regression (LR) algorithm as the best-performing model. Additionally, the results revealed several key topics discussed within each sentiment, with 10 topics in negative sentiment, 10 topics in positive sentiment, and 5 topics in neutral sentiment. The trend analysis yielded several findings, such as the relatively stable fluctuations in neutral sentiment and the high fluctuations in positive and negative sentiments during certain months. Recommendations to alleviate public and employee concerns regarding the presence of AI in the workplace include establishing specific regulations and laws governing its use based on issues that are commonly discussed in negative sentiments. Furthermore, the public should responsibly engage with AI in the workplace. Additionally, employers can prudently adapt to technology and enforce internal rules to safeguard corporate data."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Labibah Alya Huwaida
"E-commerce merupakan kontributor utama ekonomi digital Indonesia, tetapi statistik menunjukkan adanya peningkatan jumlah keluhan dan insiden penipuan terkait e-commerce yang berakibat kepercayaan masyarakat terhadap e-commerce menurun. Salah satu akar permasalahan yang diidentifikasi yaitu maraknya opini negatif publik yang cenderung mendorong pelanggan untuk tidak menggunakan layanan e-commerce. Oleh karena itu, penelitian ini menganilisis sentimen publik dengan tujuan mengetahui model terbaik untuk mengklasifikasikan sentimen, tren sentimen dari waktu ke waktu, topik utama yang melandasi sentimen tersebut, serta rekomendasi berdasarkan analisis. Penelitian ini menggunakan data dari Twitter dengan periode tweet dari Agustus hingga Oktober 2023, berfokus pada tiga e-commerce terbesar di Indonesia. Pada tahap analisis, metode machine learning untuk analisis sentimen dan Latent Dirichlet Allocation (LDA) untuk pemodelan topik diimplementasikan. Hasil penelitian menunjukkan bahwa model terbaik untuk mengklasifikasikan sentimen adalah Support Vector Machine (SVM) dengan temuan yaitu sentimen netral mendominasi, sentimen negatif stabil dengan beberapa peningkatan, sementara sentimen positif lebih bervariasi, terdapat lonjakan di beberapa titik. Topik utama sentimen positif berkaitan dengan proses belanja menyenangkan, fitur inovatif, event khusus, harga dan penawaran murah, serta dukungan terhadap produk lokal di e-commerce. Sentimen negatif berpusat pada isu ketidaksesuaian barang, pengembalian dana, pengiriman barang, dan layanan pelanggan. Rekomendasi untuk meningkatkan kepuasan pelanggan mencakup memperkuat aspek-aspek yang memicu sentimen positif, serta menangani permasalahan yang memicu sentimen negatif, seperti perbaikan proses pengiriman, dan penguatan langkah-langkah keamanan untuk mengatasi penipuan.

E-commerce plays a vital role in Indonesia's digital economy, but statistics reveal an increase in complaints and fraud incidents associated with e-commerce, leading to a decline in public trust. One identified root issue is the prevalence of negative public opinions, discouraging customers from using e-commerce services. Therefore, this study analyzes public sentiment with the aim of determining the best model for sentiment classification, understanding sentiment trends over time, identifying key topics underlying these sentiments, and providing recommendations based on the analysis. The study utilizes Twitter data from August to October 2023, focusing on the three largest e-commerce platforms in Indonesia. In the analysis phase, machine learning methods for sentiment analysis and Latent Dirichlet Allocation (LDA) for topic modeling are implemented. The findings indicate that the Support Vector Machine (SVM) is the best model for sentiment classification. Neutral sentiment dominates, negative sentiment remains stable with occasional increases, while positive sentiment is more varied, experiencing spikes at certain points. Key topics associated with positive sentiment include enjoyable shopping experiences, innovative features, special events, affordable pricing, and support for local products in e-commerce. Negative sentiment revolves around issues of product mismatch, refund processes, shipping concerns, and customer service. Recommendations to enhance customer satisfaction involve strengthening aspects that trigger positive sentiments and addressing issues causing negative sentiments, such as improving the delivery process and reinforcing security measures to tackle fraud."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dian Isnaeni Nurul Afra
"Komisi Pemberantasan Korupsi (KPK) memiliki kewenangan dalam melakukan pendaftaran dan pemeriksaan terhadap Laporan Harta Kekayaan Penyelenggara Negara (LHKPN). Pelaporan ini berfungsi untuk melakukan pengawasan kejujuran, integritas, dan deteksi kemungkinan adanya tindakan memperkaya diri secara melawan hukum oleh pejabat publik. Publikasi LHKPN sering menimbulkan prasangka negatif dan kecurigaan publik terhadap laporan harta kekayaan pejabat yang mengakibatkan kekhawatiran pejabat untuk melaporkan harta kekayaan secara lengkap dan benar. Persepsi ini menjadi kontraproduktif dengan upaya pencegahan korupsi yang dilakukan oleh KPK apabila tidak direspon dengan cepat. Penelitian ini bertujuan untuk membuat model analisis sentimen dan pemodelan topik yang dapat mengeksplorasi topik dari data media sosial Twitter. Indonesia memiliki jumlah pengguna aktif terbesar keenam di dunia dengan 15,7 juta pengguna yang didominasi kelompok usia 25-34 tahun. Dataset sejumlah 881 data diambil dari Twitter dengan kata kunci "lhkpn" dan "harta kekayaan pejabat" pada periode 1 Agustus sampai 5 November 2021. Penelitian ini mengekplorasi beberapa algoritma klasifikasi, representasi fitur unigram, bigram, dan trigram dengan CountVectorizer dan TFIDF, serta metode oversampling SMOTE. Algoritma klasifikasi dengan performa paling baik pada penelitian ini adalah Multilayer Perceptron dengan fitur unigram CountVectorizer dan metode oversampling dengan accuracy 76,60%, precision 78,19%, recall 76,60%, dan F1 score 76,95%. Hasil pemodelan topik menggunakan Latent Dirichlet Allocation pada kategori ‘negatif’ didominasi ekspresi kekecewaan dan kemarahan masyarakat terhadap meningkatnya harta kekayaan pejabat selama masa pandemi Covid-19 yang berbanding terbalik dengan meningkatnya utang negara dan kesulitan yang dihadapi masyarakat selama pandemi. Topik yang dihasilkan pada kategori ‘positif’ cukup beragam mulai dari aturan untuk melakukan pembuktian terbalik, usulan mengenai kewajiban pelaporan dan sanksi, permintaan untuk membuka laporan kekayaan kepada publik, serta pembahasan mengenai kewajaran penambahan harta kekayaan yang disebabkan oleh meningkatnya nilai aset tidak bergerak.

The Corruption Eradication Commission (KPK) has the authority to register and examine Public Officials Wealth Reports (LHKPN). This report serves to monitor honesty, integrity, and detect the possibility of illegal enrichment by public officials. Publication of LHKPN often creates negative prejudice and public suspicion of official wealth reports, which causes officials to worry about reporting assets completely and correctly. This perception is counterproductive to the efforts to prevent corruption carried out by the KPK if it is not responded to quickly. This study aims to create a sentiment analysis model and topic modelling that can explore topics from Twitter social media data. Indonesia has the sixth-largest number of active users in the world with 15.7 million users, dominated by the 25-34 year age group. A dataset of 881 data was taken from Twitter with the keywords "lhkpn" and "official assets" in the period August 1 to November 5, 2021. This study explores several classification algorithms, representation of unigram, bigram, and trigram features with CountVectorizer and TFIDF, as well as SMOTE oversampling methods. The classification algorithm with the best performance is the Multilayer Perceptron with the unigram CountVectorizer feature and the oversampling method with 76.60% accuracy, 78.19% precision, 76.60% recall, and 76.95% F1 score. The results of topic modelling using Latent Dirichlet Allocation in the 'negative' category are dominated by expressions of public disappointment and anger towards the increase in official wealth during the Covid-19 pandemic which is inversely proportional to the increase in state debt and the difficulties faced by the community during the pandemic. The topics generated in the 'positive' category are quite diverse, starting from the rules for conducting reverse verification, proposals on reporting obligations and sanctions, requests to disclose wealth reports to the public, as well as discussions on the reasonableness of adding to assets caused by the increase in the value of immovable assets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Zuhri Bayhaqi
"Analisis sentimen terhadap opini publik di Twitter dapat memberikan wawasan yang berharga dalam memahami dukungan dan pemikiran masyarakat terkait calon presiden dan isu-isu terkait Pilpres 2024. Penelitian ini bertujuan untuk mengembangkan sistem analisis sentimen terhadap opini publik tentang Pilpres Indonesia 2024 yang tersebar di media sosial Twitter dalam bahasa Indonesia. Algoritma yang digunakan dalam pengembangan sistem tersebut adalah Naïve Bayes, sebuah algoritma klasifikasi yang telah terbukti efektif dalam analisis sentimen. Data yang digunakan dalam penelitian ini adalah kumpulan tweet atau cuitan yang diperoleh dari Twitter dengan menggunakan teknik web scraping. Persentasi Akurasi pada uji coba setiap skenario yang dilakukan mendapatkan hasil terbaik dengan nilai 81,18% untuk Skenario 1, 72,58% untuk Skenario 2, 65,05% untuk Skenario 3, dan 80,11% untuk Skenario 4. Hasil evaluasi model sistem yang dikembangkan terhadap klasifikasi sebenarnya menunjukkan bahwa analisis sentimen menggunakan algoritma Naïve Bayes dapat memberikan hasil yang baik tentang sentimen opini publik terkait Pilpres Indonesia 2024 di media sosial Twitter. Pengembangan sistem yang dikerjakan memberikan hasil model yang dapat melakukan analisis sentimen secara mandiri dengan akurasi yang tinggi terhadap opini publik terkait Pilpres Indonesia 2024 dengan nilai rata-rata 81,18%. Hasil analisis sentimen ini dapat membantu pihak-pihak terkait, termasuk calon presiden dan tim kampanye mereka, untuk memahami sejauh mana opini publik mendukung atau menentang mereka.

Sentiment analysis of public opinion on Twitter can provide valuable insight in understanding public support and thoughts regarding presidential candidates and issues related to the 2024 presidential election. This research aims to develop a sentiment analysis system for public opinion about the 2024 Indonesian Presidential Election shared on Twitter social media. in Indonesian. The algorithm used in developing the system is Naïve Bayes, a classification algorithm that has been proven effective in sentiment analysis. The data used in this research is a collection of tweets obtained from Twitter using web scraping techniques. The percentage of accuracy in testing each scenario carried out obtained the best results with a value of 81.18% for Scenario 1, 72.58% for Scenario 2, 65.05% for Scenario 3, and 80.11% for Scenario 4. Model evaluation results system developed for classification actually shows that sentiment analysis using the Naïve Bayes algorithm can provide good results regarding public opinion sentiment regarding the 2024 Indonesian Presidential Election on Twitter social media. The system development carried out provides model results that can carry out sentiment analysis independently with high accuracy regarding public opinion regarding the 2024 Indonesian Presidential Election. The results of this sentiment analysis can help related parties, including presidential candidates and their campaign teams, to understand the extent of opinion. they. society supports or opposes them."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhenda Rizky Pradiptyo
"Prediksi pasar saham merupakan topik yang banyak dibahas di berbagai bidang. Banyak
penelitian, terutama di bidang teknologi informasi, telah menggunakan algoritma
pembelajaran mesin untuk meningkatkan akurasi prediksi pasar saham. Penelitian ini
bertujuan untuk menilai efektivitas prediksi kinerja pasar saham dengan menggabungkan
sentimen media sosial Twitter dengan data historis. Selain itu, penelitian ini menggunakan algoritma LSTM untuk melatih model prediksi harga saham masing-
masing bank. Model ini dilatih dengan dataset yang mencakup harga saham historis bank dan nilai sentimen dari postingan media sosial Twitter. Hasil evaluasi performa model
dengan data historis paling baik dimiliki oleh model prediksi Bank BRI yaitu memiliki nilai R-square dan RMSE sebesar 0.76 dan 69.47. Selain itu, model prediksi Bank BRI
juga memiliki model yang paling baik apabila terdapat tambahan fitur sentimen yaitu
memiliki nilai R-square dan RMSE sebesar 0.75 dan 70.51. Kedua model tersebut kemudian diuji beda dengan menggunakan paired t-test, dan hasil pengujian tersebut menghasilkan nilai t yang kurang dari tingkat signifikansi (0.05), sehingga mengindikasikan bahwa populasi distribusi model yang berbeda. Hal ini juga memberikan bukti yang cukup kuat bahwa populasi model prediksi yang menggunakan tambahan sentiment feature tidak berpengaruh signifikan dalam model prediksi.

Stock market prediction is a widely discussed topic across various fields. Many studies,
particularly in the field of information technology, have employed machine learning algorithms to enhance the accuracy of stock market predictions. This research aims to evaluate the effectiveness of predicting stock market performance by combining social media sentiment from Twitter with historical data. Additionally, this study uses the LSTM algorithm to train stock price prediction models for each banks. The models are trained with datasets that include historical stock prices and sentiment values from Twitter posts.
The evaluation results show that the best-performing model using historical data is for Bank BRI, with an R-square value of 0.76 and an RMSE of 69.47. Furthermore, the Bank BRI prediction model aso performs best when sentiment features were added, with an R-square value of 0.75 and an RMSE of 70.51. These two models were then compared using a paired t-test, and the results indicated that the t-value was less than the significance level(0.05), suggesting that the distributions of the models are significantly different. This provides strong evidence that incorporating sentiment features does not have a significant impact on the prediction models.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Hanif Sudira
"Peran internet semakin penting dalam berbagai aspek kehidupan masyarakat. Kebutuhan akan internet menjadi peluang bagi penyedia internet, salah satunya Telkom dengan IndiHome. Sebagai BUMN, Telkom berperan sebagai penyedia layanan internet untuk memenuhi kebutuhan masyarakat. Berdasarkan survei kepuasan pelanggan tahun 2019 dan 2020, NPS IndiHome tidak mencapai target. Dari target besar atau sama dengan 5, tahun 2019 dan 2020, NPS IndiHome sebesar -1,67 dan 2,87. Hal ini karena pengerjaan permasalahan masih berdasarkan laporan, belum memiliki cara untuk mengetahui permasalahan yang terjadi dan belum memanfaatkan opini media sosial karena masih memanfaatkan survei. Penelitian ini membangun model analisis sentimen dam topic modelling IndiHome pada twitter & instagram. Data diambil dari bulan Maret 2019-April 2021. Model yang dihasilkan menggunakan metode SVM, twitter akurasi 70,13% dan instagram akurasi 73,55%. Sentimen mayoritas negatif, nilai NPS -79,49 pada twitter dan -56,12 pada Instagram. Dari twitter & instagram respons terhadap IndiHome memiliki indeks negatif, dimana masyarakat tidak puas dengan IndiHome. Hasil Topik diskusi negatif yaitu internet IndiHome mati mendadak, internet IndiHome lamban, internet IndiHome mati ketika terjadi hujan, biaya IndiHome mahal, pelayanan IndiHome tidak responsif, pelayanan IndiHome tidak solutif, sudah bayar internet diisolir, janji temu teknisi tidak sesuai waktu, dan ingin berhenti berlangganan atau pindah provider.

The role of the internet is increasingly important in various aspects of people's lives. The need for internet is an opportunity for internet providers, one of which is Telkom and IndiHome. As a BUMN, Telkom acts as a provider of internet services to meet the needs of the community. Based on customer satisfaction surveys in 2019 and 2020, IndiHome's NPS did not reach the target. Of the large target or equal to 5, in 2019 and 2020, IndiHome's NPS is -1.67 and 2.87. This is because the problem solving is still based on reports, does not have a way to find out the problems that occur and has not used social media opinions because they are still using surveys. This study builds a sentiment analysis model and IndiHome topic modeling on Twitter & Instagram. The data was taken from March 2019-April 2021. The resulting model used the SVM method, twitter 70.13% accuracy and instagram 73.55% accuracy. The majority sentiment is negative, the NPS score is -79.49 on Twitter and -56.12 on Instagram. From Twitter & Instagram, the response to IndiHome has a negative index, where people are not satisfied with IndiHome. The results of the negative discussion topics are IndiHome internet shuts down suddenly, IndiHome internet is slow, IndiHome internet shuts down when it rains, IndiHome costs are expensive, IndiHome services are unresponsive, IndiHome services are not solutive, already paid for the internet is isolated, technician appointments are not on time, and want to stop subscribe or switch providers."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Anton Ade Putra
"Universitas T memiliki rencana (roadmap) untuk mengembangkan berbagai jenis Metaverse di masa depan. Namun, ada kekhawatiran bahwa roadmap yang telah dibuat mungkin tidak sesuai dengan kebutuhan masyarakat. Oleh karena itu, penelitian ini bertujuan untuk menganalisis sentimen dan pemodelan topik tentang Metaverse di media sosial guna memberikan wawasan yang penting bagi roadmap pengembangan Metaverse di Universitas T dengan memperhatikan pendapat dan sentimen masyarakat. Data yang digunakan dalam penelitian ini adalah twit berbahasa Indonesia yang dikumpulkan dari bulan Agustus 2021 hingga April 2023. Untuk analisis, digunakan pustaka LazyPredict yang menghasilkan lima model klasifikasi, yaitu Bernoulli Naive Bayes (BernoulliNB), Nearest Centroid, Calibrated Classifier CV, Logistic Regression, dan Linear Support Vector Classification (LinearSVC). Hasil menunjukkan bahwa model BernoulliNB memiliki performa terbaik dengan nilai rata-rata F1 sebesar 0,788. Selain itu, penelitian ini juga mengidentifikasi topik-topik yang dibahas terkait dengan Metaverse menggunakan pustaka Bertopic. Temuan menunjukkan adanya topik negatif seperti ketidakpastian pengembangan Metaverse, skeptisisme terhadap teknologi baru, keterbatasan infrastruktur internet, kekhawatiran etika dan syariah, ketidakpastian legalitas, kekhawatiran privasi dan keamanan, serta skeptisisme terhadap kesiapan Indonesia dalam membangun Metaverse. Di sisi lain, topik positif meliputi peluncuran Metaverse Jagat Nusantara, potensi kripto dalam konteks Metaverse, perubahan nama Facebook menjadi Meta, konser virtual di Metaverse, kehidupan di dunia Metaverse, pengembangan teknologi Metaverse di dalam negeri, transformasi digital dan inovasi di era Metaverse, penggunaan blockchain, kripto, dan NFT dalam teknologi Metaverse, serta Manasik Haji di Metaverse. Hasil analisis sentimen dan pemodelan ini dapat memberikan wawasan yang berharga bagi Universitas T dalam memahami tren dan pandangan masyarakat terkait Metaverse. Hal ini akan membantu universitas dalam mengevaluasi roadmap Metaverse yang telah dibuat untuk memastikan kesesuaiannya dengan kebutuhan masyarakat.

Universitas T has a roadmap to develop various types of Metaverse in the future. However, there are concerns that the existing roadmap may not align with the needs of society. Therefore, this research aims to analyze the sentiment and topic modeling related to Metaverse on social media to provide valuable insights for the development roadmap of Metaverse at Universitas T, taking into account the opinions and sentiments of the public. The data used in this study are Indonesian tweets collected from August 2021 to April 2023. The LazyPredict library is utilized for analysis, which generates five classification models: Bernoulli Naive Bayes (BernoulliNB), Nearest Centroid, Calibrated Classifier CV, Logistic Regression, and Linear Support Vector Classification (LinearSVC). The results show that the BernoulliNB model performs the best with an F1 score of 0.788. Additionally, this research identifies various topics discussed in relation to Metaverse using Bertopic library. Findings indicate the presence of negative topics such as uncertainty in Metaverse development, skepticism towards new technologies, limitations of internet infrastructure, ethical and Sharia concerns, legal uncertainties, privacy and security concerns, as well as skepticism about Indonesia's readiness in building the Metaverse. On the other hand, positive topics include the launch of Metaverse Jagat Nusantara, the potential of cryptocurrencies in the context of Metaverse, the name change of Facebook to Meta, virtual concerts in the Metaverse, life in the Metaverse world, domestic Metaverse technology development, digital transformation and innovation in the era of Metaverse, the use of blockchain, cryptocurrencies, and NFTs in Metaverse technology, as well as Manasik of Hajj in the Metaverse. The results of sentiment analysis and topic modeling can provide valuable insights for Universitas T to understand the trends and public perspectives regarding Metaverse. This will assist the university in evaluating the existing Metaverse roadmap to ensure its alignment with the needs of society."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jwalita Galuh Garini
"IndiHome melalui IndiHome TV mempertahankan posisinya sebagai penyedia saluran televisi terlengkap di Indonesia. Layanan ini juga diperluas ke aplikasi mobile dan situs web. Namun perkembangan pada platform web diketahui sudah lebih cepat dibandingkan platform mobile, padahal terdapat kebutuhan pelanggan untuk peningkatan kenyamanan, kemudahan, dan kelengkapan fitur pada aplikasi mobile. Hasil observasi dan wawancara juga menunjukkan aplikasi mobile IndiHome TV tidak mencapai target rating yang diharapkan yang menjadi indikasi pengguna belum puas dengan aplikasi saat ini. Salah satu akar permasalahan yang diidentifikasi adalah perbaikan aplikasi hanya berasal dari laporan. Sementara laporan tersebut belum sepenuhnya menggambarkan kebutuhan pengguna. Pemanfaatan ulasan pengguna perlu dimaksimalkan sebagai masukan dalam perbaikan aplikasi agar lebih tepat sasaran. Ulasan berpotensi dapat digunakan untuk mengetahui kebutuhan pengguna. Penelitian ini bertujuan melakukan analisis sentimen dan pemodelan topik terhadap ulasan pengguna di Google Play Store dan Apple App Store. Analisis sentimen dilakukan menggunakan Naïve Bayes dan Support Vector Machines untuk mengklasifikasikan ulasan ke dalam positif, netral, dan negatif. Sementara pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation terhadap ulasan sentimen positif dan negatif. Hasil eksperimen menunjukkan model Support Vector Machines secara umum mengungguli model Naïve Bayes. Model terbaik yang diperoleh menghasilkan performa accuracy 80,53%, precision 80,47%, recall 73,28%, dan F1-score 75,89%. Model tersebut mampu mengatasi ketidakseimbangan data dan menunjukkan kemampuan generalisasi yang baik. Hasil klasifikasi sentimen pada keseluruhan data menunjukkan dominasi kelas negatif dan kelas positif dengan 42,30% dan 40,91% dari total ulasan. Sementara pemodelan topik menghasilkan 4 topik pada ulasan positif dan 8 topik pada ulasan negatif. Hasil tersebut dapat digunakan sebagai acuan perbaikan aplikasi agar perusahaan dapat membuat aplikasi yang sesuai dengan harapan pengguna.

IndiHome, through IndiHome TV, maintains its position as Indonesia's most complete television channel provider. This service is also extended to mobile applications and websites. However, developments on web platforms are known to be faster than mobile platforms, even though there is a customer need for increased comfort, convenience, and completeness of features in mobile applications. The observations and interviews also show that the IndiHome TV mobile application did not reach the expected rating target, which is an indication that users are not satisfied with the current application. One of the root causes identified was that application improvements only came from reports. Meanwhile, the report does not fully describe user needs. User reviews need to be maximized as input in improving applications to make them more targeted. Reviews can be used to determine user needs. This research aims to conduct sentiment analysis and topic modeling on user reviews on the Google Play Store and Apple App Store. Sentiment analysis used Naïve Bayes and Support Vector Machines to classify reviews into positive, neutral, and negative. Meanwhile, topic modeling was carried out using Latent Dirichlet Allocation for positive and negative sentiment reviews. Experimental results show that the Support Vector Machines model generally outperforms the Naïve Bayes model. The best model obtained produced an accuracy performance of 80,53%, precision of 80,47%, recall of 73,28%, and F1-score of 75,89%. The model can overcome data imbalance and shows good generalization ability. The sentiment classification results on the entire data show the dominance of the negative and positive classes, with 42,30% and 40,91% of the total reviews. Meanwhile, topic modeling produced four topics with positive reviews and eight topics with negative reviews. These results can be used as a reference for application improvements so that companies can create applications that meet user expectations."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Yislam
"ABSTRAK
Perkembangan Internet di Indonesia cukup pesat, hal ini ditandai dengan meningkatnya penggunaan jejaring sosial, khususnya Twitter. Untuk mengetahui pandangan masyarakat terhadap suatu pemerintahan dapat digunakan analisis sentimen menggunakan data Twitter. Penelitian ini melakukan analisis sentimen terhadap pemerintahan Jokowi dalam bidang politik, ekonomi dan hukum. Metode untuk mengklasifikasikan sentimen pada tweet berdasarkan kamus leksikon. Data twitter dikumpulkan selama satu bulan dari tanggal 1 sampai 31 Oktober 2015 berjumlah 6489, 3967 dan 8018 untuk bidang politik, ekonomi dan hukum. Pengklasifikasian twitter menjadi tiga kelompok, positif, negatif dan netral. Secara umum hasil uji coba menunjukkan bahwa sebagian besar data twitter diklasifikasikan sebagai netral. Jika dilihat hanya sentimen positif dan sentimen negatif maka untuk bidang politik dan ekonomi sentimen positif lebih tinggi, sedangkan untuk bidang hukum sentimen negatif lebih tinggi.

ABSTRACT
The development of the Internet in Indonesia is quite rapid, it is marked by the increasing use of social networks, especially Twitter. To find out the public?s view of a government may use sentiment analysis using Twitter data. This research analyzes citizen sentiment to Indonesian government in the fields of politics, economics and law. The method to classify sentiment in a tweet based on lexicon of those fields. We collect data Twitter during one month in October 2015, the number of data are 6489, 3967 and 8018 for the fields of politics, economics and law, respectively. We classify the data into three groups: positive, negative and neutral. In general, results of experiments showed that most of the data twitter classified as neutral. When only include positive and negative sentiment, there is higher positive sentiment on politics and economic fields, while negative sentiment higher for the laws field.
"
2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jefka Dhammananda
"Pesatnya perkembangan teknologi informasi dan komunikasi menuntut adanya inovasi dalam pengembangan aplikasi agar dapat mengikuti perkembangan yang cepat tersebut. Segari adalah salah satu penyedia layanan supermarket online yang populer di Indonesia. Segari merupakan perusahaan yang berlandasan customer centric dan mempunyai nilai Be Obsessed with our Customers, sangat mengedepankan kebutuhan dari pelanggannya. Minimnya sumber daya manusia dan banyaknya ulasan pelanggan yang perlu di analisis menghambat proses penggalian informasi dari ulasan pelanggan tersebut, sehingga diperlukan model pembelajaran mesin yang dapat secara otomatis melakukan analisis sentimen untuk mengklasifikasikan ulasan menjadi sentimen positif atau negatif. Informasi yang diambil dari analisis sentimen dapat digunakan sebagai referensi untuk menjaga kualitas layanan berdasarkan sentimen positif, sedangkan hasil dari sentimen negatif dapat digunakan sebagai bahan evaluasi untuk meningkatkan layanan dan aplikasi Segari. Dalam penelitian ini, peneliti membahas implementasi model analisis sentimen menggunakan ulasan pelanggan dari Google Play Store. Metode pembuatan model dimulai dari pengumpulan data, pelabelan data, pra proses data, ekstraksi fitur, model klasifikasi sentimen, evaluasi model, dan pemodelan topik. Peneliti menggunakan dua algoritma klasifikasi, Naive Bayes Classifier (NB) dan Support Vector Machine (SVM), pada total 10.507 ulasan. Data menunjukkan bahwa 74,37% ulasan mengungkapkan sentimen positif, sedangkan 25,63% mengungkapkan sentimen negatif. Hasil penelitian menunjukkan bahwa algoritma SVM dengan oversampling mencapai kinerja model terbaik, dengan recall sebesar 89,98%. Selain itu, peneliti menggunakan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi topik terkait dengan perspektif pelanggan tentang Segari yang selanjutnya disampaikan kepada tim terkait. Hasil analisis mengungkapkan bahwa terdapat pelanggan yang puas dan kecewa dengan proses pengiriman produk. Pelanggan umumnya sudah puas dengan kualitas dan kesegaran dari produk. Beberapa pelanggan merasa kecewa karena pesanan yang kosong atau tidak lengkap dalam paket. Terdapat pelanggan yang puas dan kecewa terhadap aplikasi antarmuka pengguna, kecepatan, maupun kinerja aplikasi. Terdapat pelanggan yang puas dan kecewa terhadap harga, promo, dan voucher yang tersedia. Beberapa pelanggan merasa kecewa terhadap servis yang diberikan oleh customer service. Secara keseluruhan, penelitian ini memperluas pengetahuan tentang metode analisis sentimen dan memberikan wawasan tentang melakukan penelitian terkait analisis sentimen dan ulasan pelanggan.

The rapid development of information and communication technology demands innovation in application development to keep up with such rapid advancement. Segari is one of the popular online supermarket service providers in Indonesia. Segari is a customer-centric company with a core value of being obsessed with its customers, prioritizing their needs. The lack of human resources and the abundance of customer reviews that need to be analyzed hinder the process of extracting information from these reviews. Therefore, a machine learning model is needed to automatically perform sentiment analysis and classify the reviews into positive or negative sentiments. The information extracted from sentiment analysis can be used as a reference to maintain service quality based on positive sentiments, while the results of negative sentiments can be used for evaluation to improve Segari's services and application. In this research, the implementation of a sentiment analysis model using customer reviews from the Google Play Store is discussed. The model development process includes data collection, data labeling, data preprocessing, feature extraction, sentiment classification model, model evaluation, and topic modeling. The researcher utilized two classification algorithms, Naive Bayes Classifier (NB) and Support Vector Machine (SVM), on a total of 10,507 reviews. The data shows that 74.37% of the reviews express positive sentiments, while 25.63% express negative sentiments. The results of the study indicate that the SVM algorithm with oversampling achieved the best model performance, with a recall of 89.98%. Additionally, the researcher used Latent Dirichlet Allocation (LDA) to identify topics related to customer perspectives on Segari, which will be communicated to the relevant team. The analysis revealed that some customers are satisfied while others are disappointed with the product delivery process. Customers generally expressed satisfaction with the quality and freshness of the products. Some customers felt disappointed due to missing or incomplete items in their orders. There were mixed opinions about the user interface, speed, and performance of the application. Customers also expressed satisfaction and dissatisfaction with the available prices, promotions, and vouchers. Some customers felt disappointed with the service provided by the customer service team. Overall, this paper extends knowledge of sentiment analysis methods and provides insights on conducting research related to sentiment analysis and customer reviews.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>