UI - Tugas Akhir :: Kembali

UI - Tugas Akhir :: Kembali

Analisis Sentimen dan Pemodelan Topik Kepuasan Pelanggan E-Commerce di Indonesia Mengguanakan Data Twitter = Sentiment Analysis and Topic Modelling Customers Satisfaction of E-commerce in Indonesia Utilizing Twitter Data

Labibah Alya Huwaida; Achmad Nizar Hidayanto, supervisor; Muhammad Rifki Shihab, examiner; Muhammad Hafizhuddin Hilman, examiner (Fakultas Ilmu Komputer Universitas ndonesia, 2024)

 Abstrak

E-commerce merupakan kontributor utama ekonomi digital Indonesia, tetapi statistik menunjukkan adanya peningkatan jumlah keluhan dan insiden penipuan terkait e-commerce yang berakibat kepercayaan masyarakat terhadap e-commerce menurun. Salah satu akar permasalahan yang diidentifikasi yaitu maraknya opini negatif publik yang cenderung mendorong pelanggan untuk tidak menggunakan layanan e-commerce. Oleh karena itu, penelitian ini menganilisis sentimen publik dengan tujuan mengetahui model terbaik untuk mengklasifikasikan sentimen, tren sentimen dari waktu ke waktu, topik utama yang melandasi sentimen tersebut, serta rekomendasi berdasarkan analisis. Penelitian ini menggunakan data dari Twitter dengan periode tweet dari Agustus hingga Oktober 2023, berfokus pada tiga e-commerce terbesar di Indonesia. Pada tahap analisis, metode machine learning untuk analisis sentimen dan Latent Dirichlet Allocation (LDA) untuk pemodelan topik diimplementasikan. Hasil penelitian menunjukkan bahwa model terbaik untuk mengklasifikasikan sentimen adalah Support Vector Machine (SVM) dengan temuan yaitu sentimen netral mendominasi, sentimen negatif stabil dengan beberapa peningkatan, sementara sentimen positif lebih bervariasi, terdapat lonjakan di beberapa titik. Topik utama sentimen positif berkaitan dengan proses belanja menyenangkan, fitur inovatif, event khusus, harga dan penawaran murah, serta dukungan terhadap produk lokal di e-commerce. Sentimen negatif berpusat pada isu ketidaksesuaian barang, pengembalian dana, pengiriman barang, dan layanan pelanggan. Rekomendasi untuk meningkatkan kepuasan pelanggan mencakup memperkuat aspek-aspek yang memicu sentimen positif, serta menangani permasalahan yang memicu sentimen negatif, seperti perbaikan proses pengiriman, dan penguatan langkah-langkah keamanan untuk mengatasi penipuan.

E-commerce plays a vital role in Indonesia's digital economy, but statistics reveal an increase in complaints and fraud incidents associated with e-commerce, leading to a decline in public trust. One identified root issue is the prevalence of negative public opinions, discouraging customers from using e-commerce services. Therefore, this study analyzes public sentiment with the aim of determining the best model for sentiment classification, understanding sentiment trends over time, identifying key topics underlying these sentiments, and providing recommendations based on the analysis. The study utilizes Twitter data from August to October 2023, focusing on the three largest e-commerce platforms in Indonesia. In the analysis phase, machine learning methods for sentiment analysis and Latent Dirichlet Allocation (LDA) for topic modeling are implemented. The findings indicate that the Support Vector Machine (SVM) is the best model for sentiment classification. Neutral sentiment dominates, negative sentiment remains stable with occasional increases, while positive sentiment is more varied, experiencing spikes at certain points. Key topics associated with positive sentiment include enjoyable shopping experiences, innovative features, special events, affordable pricing, and support for local products in e-commerce. Negative sentiment revolves around issues of product mismatch, refund processes, shipping concerns, and customer service. Recommendations to enhance customer satisfaction involve strengthening aspects that trigger positive sentiments and addressing issues causing negative sentiments, such as improving the delivery process and reinforcing security measures to tackle fraud.

 File Digital: 1

Shelf
 TA-Labibah Alya Huwaida.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tugas Akhir
No. Panggil : TA-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 101 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
TA-pdf 16-24-60141222 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920539132
Cover