Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 229515 dokumen yang sesuai dengan query
cover
Moh. Hasan Basri
"Perbankan di Indonesia telah meluncurkan aplikasi perbankan seluler dengan tujuan untuk memberikan pengalaman layanan yang baik bagi nasabah. Bank harus meningkatkan efektivitas aplikasi perbankan seluler mereka untuk memberikan peningkatan nilai aplikasi tersebut. Dalam upaya menemukan ruang perbaikan bagi perbankan, penelitian ini dilakukan untuk mengetahui topik yang umum dibicarakan serta mengetahui sentimen ulasan pengguna layanan perbankan seluler di Indonesia pada ulasan Google Play yang dimiliki oleh BNI, BCA, dan Mandiri. Penelitian ini menambah penerapan text mining dan membantu pengembang platform digital perbankan ulasan dengan efisien, dan mendukung pengambilan keputusan dan strategi bisnis unggul. Tiga algoritma klasifikasi sentimen, yaitu logistic regression, naïve bayes, dan support vector machine digunakan dalam penelitian ini. Algoritma dijalankan pada pemodelan train data, k-fold cross validation data train, k-fold cross validation semua data, dan prediksi data test. Pemodelan topik adalah LDA (Latent Dirichlet Allocation) untuk kategori sentimen. Algoritma logisitc regression memiliki akurasi tertinggi yaitu 97,00 %. Model digunakan pada data baru, diketahui ulasan didominasi dengan sentimen negatif yaitu sebesar 62,22% atau sebanyak 7.374 sedangkan ulasan sentimen positif sebesar 37,78% atau sebanyak 4.477 ulasan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen positif memiliki nilai koheren tertinggi 0,649 dengan jumlah 19 topik membahas kemudahan dan kelancaran transaksi, kelengkapan fitur, keamanan, akses dan login, kecepatan dan efisiensi, dan kemudahan penggunaan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen negatif memiliki nilai koheren tertinggi 0,440 dengan jumlah 18 topik membahsas push notifikasi uang masuk, top-up dan transfer gagal, kesulitan login aplikasi perbankan seluler, update mengganggu, gagal transaksi, saldo terpotong saat gagal transaksi, error sistem, kendala BI-Fast dan kartu, dan masalah verifikasi. Kata kunci: pemodelan topik, analisis sentimen, text mining, aplikasi perbankan seluler, ulasan aplikasi.

Banks in Indonesia have launched mobile banking to provide good experience for customers. However, digital mobile banking services in Indonesia are considered unideal. Banks shall increase the effectiveness of their mobile banking applications to gain value added. Finding room for improvement can be done by analyzing mobile banking user feedback in the Google Play review column. This research aims to determine the topics that are commonly discussed and expected as well as to find out the sentiment of reviews of mobile banking owned by BNI, BCA, and Mandiri. This research enhances the application of text mining and helps digital banking platform developers analyze reviews efficiently, supporting decision-making and superior business strategies. Three sentiment classification algorithms, namely logistic regression, naïve Bayes, and support vector machine were used in this research. Each algorithm is run for modeling train data, k-fold cross validation of train data, k-fold cross validation of all data, and prediction of test data. Topic modeling is LDA (Latent Dirichlet Allocation) for each sentiment category. The logical regression algorithm is the highest accuracy, 97.00%. Apply model for new data, 62.22% or 7,374 reviews are dominated by negative sentiment, while positive sentiment reviews are 37.78% or 4,477 reviews. Topic modeling of mobile banking review with positive sentiment has the highest coherent value of 0.649 with 19 topics discusses ease and smoothness of transactions, completeness of features, security, access and login, speed and efficiency, and ease of use. Meanwhile, topic modeling with negative sentiment has the highest coherent value of 0.440 with a total of 18 topics discusses push notifications for incoming money, failed top-ups and transfers, difficulties login to mobile banking, annoying updates, failed transactions, balances deducted when transactions fail, system errors, BI-Fast and card problems, and verification problems."
Jakarta: Fakultas Ilmu Komputer, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Brigita Sance
"Peningkatan aktivitas pembayaran dan transaksi online mendorong transformasi produk dan layanan perbankan. Di era big data, ulasan menjadi penting bagi bank untuk mengetahui tingkat kepuasan nasabah sebagai masukan untuk perbaikan. Saat bank merilis aplikasi mobile banking di Google Play Store, pelanggan dapat memberikan ulasan tentang pengalaman mereka menggunakan aplikasi tertentu. Tujuan dari penelitian ini adalah untuk memahami sentimen pengguna aplikasi mobile banking melalui analisis sentimen. Metode Natural Language Processing (NLP) digunakan untuk mengekstrak data teks, meliputi: pra-proses, analisis sentimen setiap ulasan dan analisis lima dimensi kualitas layanan berbasis mobile. Beberapa masalah dan dimensi kualitas layanan harus ditingkatkan untuk memenuhi kebutuhan pelanggan. Dengan adanya kemungkinan pengguna untuk terus menggunakan mobile banking, bank dapat memprediksi perilaku pelanggan di masa mendatang.

Increased online payment and transaction activities drive the transformation of banking products and services. In the big data era, reviews are important for banks to discover customer’s satisfaction levels as input for improvement. As banks release mobile banking applications in Google Play Store, customers can leave reviews regarding their experience using certain applications. The purpose of this study is to understand customer sentiment of mobile banking applications through sentiment analysis. Natural Language Processing (NLP) method is used to extract the text data, including: pre-processing, analysing the sentiment of each review and analysing the sentiment of five dimensions of e-service quality. Some issues and dimensions of service quality should be improved to satisfy customers’ needs. Discovering the probability of continuing to use mobile banking, a bank may predict the future behaviour of the customers."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Shofwan Amrullah
"PT Traveloka Indonesia adalah salah satu OTA (Agent) terbesar se-Asia Tenggara, yang mengedepankan kepuasan pelanggan sebagai keunggulan kompetitif perusahaan. Namun saat ini, terdapat penurunan tingkat kepuasan pelanggan, dan juga terjadinya penurunan jumlah pengguna aktif aplikasi. Oleh karena itu, perlu dilakukan langkah-langkah seperti melakukan inovasi atau perbaikan fitur agar dapat meningkatkan kepuasan pelanggan dan juga menaikkan kembali jumlah pengguna aktif aplikasi. Pada aplikasi Android Traveloka, jumlah ulasan mencapai 700 ribu dalam kurun waktu 2 tahun terakhir, di mana platform Android merupakan platform yang mempunyai jumlah pengguna aplikasi Traveloka terbesar dibandingkan platform lainnya. Dengan banyaknya jumlah ulasan tersebut, perusahaan masih memilah-milah ulasan negatif dan positif serta mencari topik-topik yang paling sering dibicarakan secara manual, sehingga membutuhkan waktu yang sangat lama dan cenderung tidak akurat. Hal ini menyebabkan keluhan ataupun ulasan tersebut belum secara efektif dijadikan dasar untuk membuat inovasi baru ataupun untuk memperbaiki fitur yang ada, sehingga belum memberikan kontribusi terhadap proses peningkatan kepuasan pelanggan dan peningkatan jumlah pengguna aktif aplikasi. Oleh karena itu, pada penelitian ini diusulkan suatu model yang dapat mengategorikan sentimen serta melakukan pengelompokan topik-topik yang sering muncul dari seluruh ulasan pelanggan. Algoritma Bayes, Support Vector Machine Logistic Regression digunakan untuk membuat model yang dapat mengklasifikasi sentimen dari tiap ulasan ke dalam kelas positif ataupun kelas negatif. Selain itu, dilakukan proses pemodelan topik pada tiap kelas tersebut menggunakan algoritma Latent Dirichlet Allocation (LDA). Hasil penelitian menunjukkan bahwa algoritma terbaik untuk melakukan klasifikasi adalah SVM, dengan nilai f1-score rata-rata 0.98318, dan jumlah topik yang optimal untuk sentimen positif adalah 16 dan jumlah topik yang optimal untuk sentimen negatif adalah 12. Pada kelas sentimen positif, terdapat topik-topik yang menyinggung kelengkapan fitur serta banyaknya diskon dan promo, sedangkan pada kelas sentimen negatif, terdapat topik yang berhubungan dengan fitur refund dan produk paylater. Dengan diimplementasikannya model tersebut, diharapkan PT Traveloka dapat memilah-milah ulasan ke dalam kelas sentimen positif dan negatif dengan cepat dan akurat, serta dapat dengan cepat mengetahui daftar topik-topik yang paling banyak dibicarakan oleh penggunanya.

PT Traveloka Indonesia is one of the biggest Online Travel Agents in Southeast Asia, which prioritizes customer satisfaction as the company's competitive advantage. However, there is currently a decrease in customer satisfaction scores and numbers of active users. Therefore, it is necessary to take steps such as innovating or improving features to restore customer satisfaction scores and active users. On the Traveloka Android application, the number of reviews reached 700 thousand in the last two years, where the Android platform is the platform that has the most significant number of Traveloka users compared to other platforms. Nonetheless, Traveloka is still sorting through negative and positive reviews manually and manually searching for the most discussed topics, so it takes a long time and tends to be inaccurate. This lengthy process made customer reviews are yet to be effectively used for formulating innovations or finding existing features to improve, so they are yet to help increase customer satisfaction and the number of active users of the application. Therefore, this research proposes a model to categorize sentiments and group topics that often arise from all customer reviews. The Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression algorithm are used to create a model that can classify the sentiment of each review into a positive class or a negative class. In addition, the topic modeling process for each class is carried out using the Latent Dirichlet Allocation (LDA) algorithm. The results show that the best algorithm for classifying is SVM, with an average f1-score of 0.98318, and the optimal number of topics for positive sentiment is 16, and the optimal number of topics for negative sentiment is 12. There are topics about the completeness of features and the number of discounts and promos in the positive sentiment class, while in the negative sentiment class, there are topics related to the refund feature and pay later product. With the implementation of this model, it is hoped that PT Traveloka can sort reviews into positive and negative sentiment classes quickly and accurately and quickly find out the list of topics that users most discuss."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jwalita Galuh Garini
"IndiHome melalui IndiHome TV mempertahankan posisinya sebagai penyedia saluran televisi terlengkap di Indonesia. Layanan ini juga diperluas ke aplikasi mobile dan situs web. Namun perkembangan pada platform web diketahui sudah lebih cepat dibandingkan platform mobile, padahal terdapat kebutuhan pelanggan untuk peningkatan kenyamanan, kemudahan, dan kelengkapan fitur pada aplikasi mobile. Hasil observasi dan wawancara juga menunjukkan aplikasi mobile IndiHome TV tidak mencapai target rating yang diharapkan yang menjadi indikasi pengguna belum puas dengan aplikasi saat ini. Salah satu akar permasalahan yang diidentifikasi adalah perbaikan aplikasi hanya berasal dari laporan. Sementara laporan tersebut belum sepenuhnya menggambarkan kebutuhan pengguna. Pemanfaatan ulasan pengguna perlu dimaksimalkan sebagai masukan dalam perbaikan aplikasi agar lebih tepat sasaran. Ulasan berpotensi dapat digunakan untuk mengetahui kebutuhan pengguna. Penelitian ini bertujuan melakukan analisis sentimen dan pemodelan topik terhadap ulasan pengguna di Google Play Store dan Apple App Store. Analisis sentimen dilakukan menggunakan Naïve Bayes dan Support Vector Machines untuk mengklasifikasikan ulasan ke dalam positif, netral, dan negatif. Sementara pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation terhadap ulasan sentimen positif dan negatif. Hasil eksperimen menunjukkan model Support Vector Machines secara umum mengungguli model Naïve Bayes. Model terbaik yang diperoleh menghasilkan performa accuracy 80,53%, precision 80,47%, recall 73,28%, dan F1-score 75,89%. Model tersebut mampu mengatasi ketidakseimbangan data dan menunjukkan kemampuan generalisasi yang baik. Hasil klasifikasi sentimen pada keseluruhan data menunjukkan dominasi kelas negatif dan kelas positif dengan 42,30% dan 40,91% dari total ulasan. Sementara pemodelan topik menghasilkan 4 topik pada ulasan positif dan 8 topik pada ulasan negatif. Hasil tersebut dapat digunakan sebagai acuan perbaikan aplikasi agar perusahaan dapat membuat aplikasi yang sesuai dengan harapan pengguna.

IndiHome, through IndiHome TV, maintains its position as Indonesia's most complete television channel provider. This service is also extended to mobile applications and websites. However, developments on web platforms are known to be faster than mobile platforms, even though there is a customer need for increased comfort, convenience, and completeness of features in mobile applications. The observations and interviews also show that the IndiHome TV mobile application did not reach the expected rating target, which is an indication that users are not satisfied with the current application. One of the root causes identified was that application improvements only came from reports. Meanwhile, the report does not fully describe user needs. User reviews need to be maximized as input in improving applications to make them more targeted. Reviews can be used to determine user needs. This research aims to conduct sentiment analysis and topic modeling on user reviews on the Google Play Store and Apple App Store. Sentiment analysis used Naïve Bayes and Support Vector Machines to classify reviews into positive, neutral, and negative. Meanwhile, topic modeling was carried out using Latent Dirichlet Allocation for positive and negative sentiment reviews. Experimental results show that the Support Vector Machines model generally outperforms the Naïve Bayes model. The best model obtained produced an accuracy performance of 80,53%, precision of 80,47%, recall of 73,28%, and F1-score of 75,89%. The model can overcome data imbalance and shows good generalization ability. The sentiment classification results on the entire data show the dominance of the negative and positive classes, with 42,30% and 40,91% of the total reviews. Meanwhile, topic modeling produced four topics with positive reviews and eight topics with negative reviews. These results can be used as a reference for application improvements so that companies can create applications that meet user expectations."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Irfanda Husni Sahid
"Persaingan pasar yang ketat membuat pengelola aplikasi XYZ harus dapat menghadirkan keunggulan dari produknya. Untuk itu, pengelola XYZ melakukan analisis terhadap ulasan yang diberikan oleh penggunanya. Namun, pengelola aplikasi XYZ mengalami kesulitan dalam melakukan analisis ulasan karena menggunakan cara yang manual dan tidak efisien. Penelitian ini dilakukan untuk mengetahui sentimen dari aspek-aspek mobile service quality (M-S-QUAL) dan topik-topik yang sering dibicarakan oleh pengguna aplikasi XYZ pada review Google Playstore. Data ulasan yang digunakan merupakan ulasan dari bulan Januari 2023 hingga Agustus 2024, data ini berjumlah 13,364 data. Terdapat 5,000 data yang dianotasi. Data tersebut kemudian dibersihkan dan digunakan untuk melakukan analisis sentimen berbasis aspek (ABSA) dan pemodelan topik. Hasil penelitian menunjukkan dari sembilan aspek M-S-QUAL, terdapat tiga aspek yang dieliminasi karena kekurangan data, dan terdapat empat aspek yang dieliminasi karena model machine learning yang dilatih memiliki performa yang kurang baik dengan F1-score dibawah 0.7. Model yang layak digunakan untuk scoring hanya ada pada aspek billing dan system availability yaitu model XGBoost dengan teknik oversampling synthetic minority over-sampling technique (SMOTE) untuk kedua aspek. Performa dari model-model ini adalah 0.758 pada aspek billing, dan 0.802 pada aspek system availability. Dari 4,006 ulasan relevan pada aspek billing, 6.44% adalah sentimen positif, 90.81% adalah sentimen negatif, dan 2.75% adalah sentimen netral. Dari 2,410 ulasan relevan pada aspek system availability, 7.88% memiliki sentimen positif, 86.76% memiliki sentimen negatif, dan 5.35% memiliki sentimen netral. Hasil ini menunjukkan bahwa sentimen dominan pada ulasan yang relevan dengan aspek billing dan system availability adalah sentimen negatif. Pemodelan topik dilakukan untuk masing-masing sentimen positif dan negatif pada aspek billing dan system availability. Pemodelan topik aspek billing menghasilkan 3 topik untuk sentimen positif, 3 topik untuk sentimen negatif. Pemodelan topik aspek system availability menghasilkan 2 topik untuk sentimen positif, dan 2 topik untuk sentimen negatif. Topik-topik ini yang dapat dijadikan poin perbaikan dan peningkatan aplikasi XYZ.

The intense competition in the market forces the XYZ management to offer competitive advantages in their product. To achieve this, they analyze user reviews. However, they face challenges in analyzing user reviews because they still use manual methods, which makes the process inefficient. This study aims to understand the sentiment of aspects of mobile service quality (M-S-QUAL) and the popular topics from XYZ app users in Google Play Store reviews. The data used in this study was 13,364 reviews from January 2023 to August 2024, with 5,000 of them manually labeled. The data was cleaned and used for aspect-based sentiment analysis (ABSA) and topic modeling. The results showed that, out of nine M-S-QUAL aspects, three were excluded due to insufficient data, and four more were excluded because the machine learning models performed poorly, with F1-scores below 0.7. Only the billing and system availability aspects had decent models. The models for these aspects used the XGBoost algorithm combined with synthetic minority over-sampling technique (SMOTE). The models’ performance scores were 0.758 for billing and 0.802 for system availability. For the billing aspect, out of 4,006 relevant reviews, 6.44% had positive sentiment, 90.81% were negative, and 2.75% were neutral. For system availability, out of 2,410 relevant reviews, 7.88% were positive, 86.76% were negative, and 5.35% were neutral. This shows that most users had negative sentiment about billing and system availability. Topic modeling was conducted separately for positive and negative sentiments in both the billing and system availability aspects. For the billing aspect, topic modeling resulted in three topics for positive sentiment and three topics for negative sentiment. For the system availability aspect, two topics were identified for both positive and negative sentiments. These topics can serve as key areas for improving and enhancing the XYZ application."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2025
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Habib Saputra
"Pada era digital saat ini, aplikasi Mobile Jaminan Kesehatan Nasional (JKN) telah menjadi alat penting dalam memudahkan akses dan manajemen layanan kesehatan masyarakat. Namun, untuk meningkatkan kualitas layanan dan kepuasan pengguna, perlu dilakukan analisis ulasan pengguna untuk memahami sentimen dan topik yang terkandung di dalamnya. Penelitian ini bertujuan untuk mengembangkan model analisis sentimen menggunakan metode Bidirectional Encoder Representations from Transformers (BERT) dan pendeteksian topik menggunakan metode Latent Dirichlet Allocation (LDA) pada ulasan pengguna aplikasi Mobile JKN. Penelitian ini menggunakan dataset yang terdiri dari ulasan pengguna aplikasi Mobile JKN yang dikumpulkan dari Play Store. Hasil dari penelitian ini menunjukkan bahwa model BERT yang dikembangkan berhasil mencapai akurasi sebesar 90% dalam melakukan analisis sentimen pada ulasan pengguna aplikasi Mobile JKN. Dari analisis sentimen tersebut, ditemukan bahwa dari 54.000 data yang akan dianalisis terdapat 14.748 data ulasan positif, 3.950 data ulasan netral, dan 35.302 data ulasan negatif yang terdeteksi oleh model BERT yang telah dikembangkan. Selanjutnya, melalui pendekatan LDA, penelitian ini juga berhasil mengidentifikasi 6 topik utama yang muncul dalam ulasan pengguna aplikasi Mobile JKN yang memiliki coherence value sebesar 0,466131. Topik-topik tersebut yaitu, topik pertama mengenai Pelayanan Mobile JKN, topik kedua perubahan data peserta, topik ketiga pembayaran iuran, topik keempat verifikasi nomor handphone, topik kelima update dan login pada aplikasi, dan topik keenam pendaftaran online. Hasil sentimen pada masing-masing topik menunjukkan bahwa topik 1, 2, dan 3 memiliki ulasan dengan sentimen positif lebih banyak daripada sentimen negatif, sedangkan topik 4, 5, dan 6 memiliki ulasan dengan sentimen negatif lebih banyak daripada sentimen positif. Demikian untuk topik mengenai verifikasi nomor handphone, update dan login pada aplikasi, dan pendaftaran online harus dilakukan evaluasi untuk perbaikan aplikasi Mobile JKN kedepannya.

In the current digital era, the National Health Insurance (Jaminan Kesehatan Nasional or JKN) mobile application has become an essential tool in facilitating access and management of healthcare services for the public. However, to improve service quality and user satisfaction, it is necessary to analyze user reviews to understand the sentiments and topics contained within them. This research aims to develop a sentiment analysis model using the Bidirectional Encoder Representations from Transformers (BERT) method and topic detection using the Latent Dirichlet Allocation (LDA) method on user reviews of the JKN mobile application. The research utilizes a dataset consisting of user reviews of the JKN application collected from the Play Store. The results of this study show that the developed BERT model successfully achieved an accuracy of 90% in sentiment analysis of user reviews of the JKN mobile application. From the sentiment analysis it is known that of the 54,000 data to be analyzed, there are 14,748 positive reviews, 3,950 neutral reviews, and 35,302 negative reviews detected by the BERT model that has been developed. Furthermore, through the LDA approach, this research also successfully identified 6 main topics that emerged in user reviews of the JKN mobile application with a coherence value of 0.466131. These topics are, the first topic regarding Mobile JKN Services, the second topic is changing participant data, the third topic is payment of contributions, the fourth topic is handphone number verification, the fifth topic is updating and logging in to the application, and the sixth topic is online registration. The sentiment results for each topic show that topics 1, 2, and 3 have reviews with more positive sentiment than negative sentiment, while topics 4, 5, and 6 have reviews with more negative sentiment than positive sentiment. So that for topics regarding handphone number verification, updating and logging into applications, and online registration, an evaluation must be carried out to improve the Mobile JKN application in the future."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Labibah Alya Huwaida
"E-commerce merupakan kontributor utama ekonomi digital Indonesia, tetapi statistik menunjukkan adanya peningkatan jumlah keluhan dan insiden penipuan terkait e-commerce yang berakibat kepercayaan masyarakat terhadap e-commerce menurun. Salah satu akar permasalahan yang diidentifikasi yaitu maraknya opini negatif publik yang cenderung mendorong pelanggan untuk tidak menggunakan layanan e-commerce. Oleh karena itu, penelitian ini menganilisis sentimen publik dengan tujuan mengetahui model terbaik untuk mengklasifikasikan sentimen, tren sentimen dari waktu ke waktu, topik utama yang melandasi sentimen tersebut, serta rekomendasi berdasarkan analisis. Penelitian ini menggunakan data dari Twitter dengan periode tweet dari Agustus hingga Oktober 2023, berfokus pada tiga e-commerce terbesar di Indonesia. Pada tahap analisis, metode machine learning untuk analisis sentimen dan Latent Dirichlet Allocation (LDA) untuk pemodelan topik diimplementasikan. Hasil penelitian menunjukkan bahwa model terbaik untuk mengklasifikasikan sentimen adalah Support Vector Machine (SVM) dengan temuan yaitu sentimen netral mendominasi, sentimen negatif stabil dengan beberapa peningkatan, sementara sentimen positif lebih bervariasi, terdapat lonjakan di beberapa titik. Topik utama sentimen positif berkaitan dengan proses belanja menyenangkan, fitur inovatif, event khusus, harga dan penawaran murah, serta dukungan terhadap produk lokal di e-commerce. Sentimen negatif berpusat pada isu ketidaksesuaian barang, pengembalian dana, pengiriman barang, dan layanan pelanggan. Rekomendasi untuk meningkatkan kepuasan pelanggan mencakup memperkuat aspek-aspek yang memicu sentimen positif, serta menangani permasalahan yang memicu sentimen negatif, seperti perbaikan proses pengiriman, dan penguatan langkah-langkah keamanan untuk mengatasi penipuan.

E-commerce plays a vital role in Indonesia's digital economy, but statistics reveal an increase in complaints and fraud incidents associated with e-commerce, leading to a decline in public trust. One identified root issue is the prevalence of negative public opinions, discouraging customers from using e-commerce services. Therefore, this study analyzes public sentiment with the aim of determining the best model for sentiment classification, understanding sentiment trends over time, identifying key topics underlying these sentiments, and providing recommendations based on the analysis. The study utilizes Twitter data from August to October 2023, focusing on the three largest e-commerce platforms in Indonesia. In the analysis phase, machine learning methods for sentiment analysis and Latent Dirichlet Allocation (LDA) for topic modeling are implemented. The findings indicate that the Support Vector Machine (SVM) is the best model for sentiment classification. Neutral sentiment dominates, negative sentiment remains stable with occasional increases, while positive sentiment is more varied, experiencing spikes at certain points. Key topics associated with positive sentiment include enjoyable shopping experiences, innovative features, special events, affordable pricing, and support for local products in e-commerce. Negative sentiment revolves around issues of product mismatch, refund processes, shipping concerns, and customer service. Recommendations to enhance customer satisfaction involve strengthening aspects that trigger positive sentiments and addressing issues causing negative sentiments, such as improving the delivery process and reinforcing security measures to tackle fraud."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jefka Dhammananda
"Pesatnya perkembangan teknologi informasi dan komunikasi menuntut adanya inovasi dalam pengembangan aplikasi agar dapat mengikuti perkembangan yang cepat tersebut. Segari adalah salah satu penyedia layanan supermarket online yang populer di Indonesia. Segari merupakan perusahaan yang berlandasan customer centric dan mempunyai nilai Be Obsessed with our Customers, sangat mengedepankan kebutuhan dari pelanggannya. Minimnya sumber daya manusia dan banyaknya ulasan pelanggan yang perlu di analisis menghambat proses penggalian informasi dari ulasan pelanggan tersebut, sehingga diperlukan model pembelajaran mesin yang dapat secara otomatis melakukan analisis sentimen untuk mengklasifikasikan ulasan menjadi sentimen positif atau negatif. Informasi yang diambil dari analisis sentimen dapat digunakan sebagai referensi untuk menjaga kualitas layanan berdasarkan sentimen positif, sedangkan hasil dari sentimen negatif dapat digunakan sebagai bahan evaluasi untuk meningkatkan layanan dan aplikasi Segari. Dalam penelitian ini, peneliti membahas implementasi model analisis sentimen menggunakan ulasan pelanggan dari Google Play Store. Metode pembuatan model dimulai dari pengumpulan data, pelabelan data, pra proses data, ekstraksi fitur, model klasifikasi sentimen, evaluasi model, dan pemodelan topik. Peneliti menggunakan dua algoritma klasifikasi, Naive Bayes Classifier (NB) dan Support Vector Machine (SVM), pada total 10.507 ulasan. Data menunjukkan bahwa 74,37% ulasan mengungkapkan sentimen positif, sedangkan 25,63% mengungkapkan sentimen negatif. Hasil penelitian menunjukkan bahwa algoritma SVM dengan oversampling mencapai kinerja model terbaik, dengan recall sebesar 89,98%. Selain itu, peneliti menggunakan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi topik terkait dengan perspektif pelanggan tentang Segari yang selanjutnya disampaikan kepada tim terkait. Hasil analisis mengungkapkan bahwa terdapat pelanggan yang puas dan kecewa dengan proses pengiriman produk. Pelanggan umumnya sudah puas dengan kualitas dan kesegaran dari produk. Beberapa pelanggan merasa kecewa karena pesanan yang kosong atau tidak lengkap dalam paket. Terdapat pelanggan yang puas dan kecewa terhadap aplikasi antarmuka pengguna, kecepatan, maupun kinerja aplikasi. Terdapat pelanggan yang puas dan kecewa terhadap harga, promo, dan voucher yang tersedia. Beberapa pelanggan merasa kecewa terhadap servis yang diberikan oleh customer service. Secara keseluruhan, penelitian ini memperluas pengetahuan tentang metode analisis sentimen dan memberikan wawasan tentang melakukan penelitian terkait analisis sentimen dan ulasan pelanggan.

The rapid development of information and communication technology demands innovation in application development to keep up with such rapid advancement. Segari is one of the popular online supermarket service providers in Indonesia. Segari is a customer-centric company with a core value of being obsessed with its customers, prioritizing their needs. The lack of human resources and the abundance of customer reviews that need to be analyzed hinder the process of extracting information from these reviews. Therefore, a machine learning model is needed to automatically perform sentiment analysis and classify the reviews into positive or negative sentiments. The information extracted from sentiment analysis can be used as a reference to maintain service quality based on positive sentiments, while the results of negative sentiments can be used for evaluation to improve Segari's services and application. In this research, the implementation of a sentiment analysis model using customer reviews from the Google Play Store is discussed. The model development process includes data collection, data labeling, data preprocessing, feature extraction, sentiment classification model, model evaluation, and topic modeling. The researcher utilized two classification algorithms, Naive Bayes Classifier (NB) and Support Vector Machine (SVM), on a total of 10,507 reviews. The data shows that 74.37% of the reviews express positive sentiments, while 25.63% express negative sentiments. The results of the study indicate that the SVM algorithm with oversampling achieved the best model performance, with a recall of 89.98%. Additionally, the researcher used Latent Dirichlet Allocation (LDA) to identify topics related to customer perspectives on Segari, which will be communicated to the relevant team. The analysis revealed that some customers are satisfied while others are disappointed with the product delivery process. Customers generally expressed satisfaction with the quality and freshness of the products. Some customers felt disappointed due to missing or incomplete items in their orders. There were mixed opinions about the user interface, speed, and performance of the application. Customers also expressed satisfaction and dissatisfaction with the available prices, promotions, and vouchers. Some customers felt disappointed with the service provided by the customer service team. Overall, this paper extends knowledge of sentiment analysis methods and provides insights on conducting research related to sentiment analysis and customer reviews.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Erwin Oky Sutjonong
"Tukang.com adalah brand dari PT Tukang Teknologi Indonesia yang bergerak di bidang jasa pemeliharaan bangunan yang meliputi perbaikan, pemasangan, dan paket pemeliharaan properti. Pada 3 bulan pertama setelah didirikan, Tukang.com belum mampu mencapai target pesanan yang diharapkan karena bisnis prosesnya yang masih konvensional dan tidak efisien utamanya pada proses pemesanan menggunakan website yang belum berjalan dengan baik. Manajemen Tukang.com kemudian mengambil keputusan untuk mengembangkan aplikasi berbasis mobile dalam rangka meningkatkan kualitas layanan dan memberikan nilai lebih kepada pelanggan, mitra kerja, dan tukang.
Dalam penelitian ini dilakukan pengembangan aplikasi mobile yang dimaksud dengan berbasikan metode Rational Unified Process yang telah dikonfigurasi sesuai dengan kebutuhan dan kondisi Tukang.com, pengembangan meliputi alur kerja requirement, analysis and design, dan implementation yang dilakukan secara iteratif sebanyak 3 kali. Hasil penelitian berupa aplikasi mobile Tukang.com untuk pelanggan, mitra kerja, dan tukang, selain itu dihasilkan juga konfigurasi proses pengembangan dalam bentuk Standard Operating Procedure SOP yang dapat digunakan untuk pengembangan perangkat lunak pada lingkungan Tukang.com.

Tukang.com is a brand of PT Tukang Teknologi Indonesia that provides property maintenance and fixing services. After the first three months since its establishment, Tukang.com has not yet reached its sales target because it still uses a conventional business process which is not efficient especially on its order information system. In order to solve this problem, management board has taken a decision to create mobile applications that can improve the quality of service and bring additional values to their customers, vendors, and workers.
This research attempts to develop such applications based on Rational Unified Process model that has been modified to suite Tukang.com rsquo s environment and requirements, it involves three workflows which are requirement, analysis and design, and implementation, these workflows are performed in three iterations. The results of this research are Tukang.com mobile applications and a process configuration in a form of a Standard Operating Procedure SOP of software development for Tukang.com.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Irma Rosalinda
Depok: Fakultas Hukum Universitas Indonesia, 2001
S23551
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>