Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 195958 dokumen yang sesuai dengan query
cover
Siregar, Ahmad Yusran
"Telemedicine adalah praktek kesehatan melalui aplikasi dengan memakai komunikasi audio, visual dan data, termasuk perawatan, diagnosis, konsultasi dan pengobatan serta pertukaran data medis jarak jauh. Berdasarkan hasil analisis sentimen pada aplikasi telemedicine, sering ditemukan adanya ketidakseimbangan data/imbalance data. Oleh karena itu perlu dilakukan pengembangan dengan memasukan teknik Imbalance Data dalam melakukan analisis sentimen agar mendapatkan hasil akurasi lebih baik dari penelitian sebelumnya. Tujuan penelitian ini adalah untuk mengidentifikasi penggunaan SVM-SMOTE dan EasyEnsemble dalam meningkatkan kinerja klasifikasi XGBoost pada imbalance data sentimen pada Telemedicine. Identifikasi dilakukan dengan memasukkan metode SVM-SMOTE dan EasyEnsemble Dalam Meningkatkan Kinerja Klasifikasi XGBoost menggunakan data yang diperoleh dari aplikasi Halodoc. Hasil penelitian menunjukkan bahwa penggunaan SVM SMOTE dan EasyEnsamble untuk dataset yang tidak seimbang dengan pembagian skema data 75% data training dan 25% data testing dapat meningkatkan kinerja klasifikasi XGBoost.  Hasil uji menggunakan data yang telah dilakukan balancing dengan SVM-SMOTE, EasyEnsamble dan kombinasi keduanya didapat model terbaik yang layak digunakan dalam melakukan peningkatan pada kinerja klasifikasi imbalance data sentimen pada aplikasi kesehatan. Setelah dilakukan balancing pada dataset, diperoleh nilai tertinggi AUC 0.9254 dan GMeans 0.9249, sedangkan hasil yang diperoleh dengan data set yang tidak seimbang, diperoleh nilai AUC 0.8577 dan GMeans 0.8480. Maka dapat disimpulkan bawah penggunaan SVM-SMOTE, EasyEnsemble atau kombinasi keduanya dapat meningkatkan kinerja klasifikasi pada XGBoost.

Telemedicine is the practice of healthcare through applications using audio, visual, and data communication, including remote care, diagnosis, consultation, treatment, and the exchange of medical data. Sentiment analysis on telemedicine applications often experiences data imbalance issues. Therefore, it is necessary to implement Imbalance Data techniques into sentiment analysis to achieve better accuracy than previous studies. This research aims to identify the use of SVM-SMOTE and EasyEnsemble to enhance the performance of XGBoost classification on imbalanced sentiment data in telemedicine. The identification is carried out by applying SVM-SMOTE and EasyEnsemble methods to improve XGBoost classification performance using data obtained from the Halodoc application. The research results show that using SVM-SMOTE and EasyEnsemble for imbalanced datasets, with a data split of 75% for training and 25% for testing, can enhance XGBoost classification performance. Tests conducted with balanced data using SVM-SMOTE, EasyEnsemble, and the combination resulted in the best model suitable for improving classification performance on imbalanced sentiment data in health applications. After balancing the dataset, the highest AUC value achieved was 0.9254 and GMeans was 0.9249, whereas, with the imbalanced dataset, the AUC was 0.8577 and GMeans was 0.8480. Thus, it can be concluded that the use of SVM-SMOTE, EasyEnsemble, or the combination can improve classification performance in XGBoost."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kheisya Amanda
"Dalam industri perbankan, penilaian kredit yang akurat merupakan kunci dalam mengelola risiko kredit. Perkembangan ekonomi digital telah membawa inovasi dalam proses pemberian kredit yang ditandai dengan munculnya Layanan Jasa Pinjam Meminjam Uang Berbasis Teknologi Informasi. Hal ini membuat bank dihadapkan pada tantangan penilaian kredit yang lebih kompleks. Seiring perkembangan ilmu pengetahuan dan teknologi, algoritma machine learning telah terbukti memiliki kinerja yang unggul dalam proses penilaian kelayakan kredit. Penelitian ini menggunakan dua algoritma boosting, yaitu AdaBoost dan XGBoost dalam klasifikasi kinerja pembayaran pinjaman kredit. Kinerja pembayaran pinjaman kredit dibedakan menjadi dua kelas, yaitu Good dan Bad dengan kriteria Good adalah debitur yang melakukan pembayaran pinjaman kredit tidak lebih dari 3 bulan dari batas jatuh tempo dan Bad adalah debitur yang melakukan pembayaran pinjaman kredit lebih dari 3 bulan dari batas jatuh tempo. Dalam implementasi metode, digunakan data riwayat pembayaran pinjaman kredit khususnya untuk produk Kredit Usaha Mikro (KUM) digital yang diperoleh dari PT Bank X Tbk. dengan jumlah data berjumlah 2190 observasi. Jumlah observasi yang termasuk dalam kelas Good mencapai 89,36% dari total keseluruhan observasi, menyisakan 10,64% yang termasuk dalam kelas Bad. Pada penelitian ini digunakan metode Syntetic Minority Oversampling Technique (SMOTE) untuk mengatasi dataset yang tidak seimbang. Kinerja metode dievaluasi menggunakan nilai metrik accuracy, sensitivity, specificity, dan AUC-ROC dengan mempertimbangkan proporsi data training yang berbeda, mulai dari 50% sampai dengan 90%. Untuk meningkatkan keandalan hasil, simulasi metode dilakukan sebanyak lima kali. Hasil penelitian ini menunjukkan bahwa XGBoost mengungguli AdaBoost dalam klasifikasi kinerja pembayaran pinjaman kredit, terbukti dari perolehan kinerja yang lebih baik pada mayoritas metrik evaluasi dan kelima simulasi yang dilakukan, dengan rata-rata accuracy sebesar 87,71%, sensitivity sebesar 92,29%, specificity sebesar 44,21%, dan AUC-ROC sebesar 81,16%.

In the banking industry, accurate credit assessment is key to managing credit risk. The development of the digital economy has brought innovations in the credit granting process, marked by the emergence of Financial Technology-Based Money Lending Services. This presents banks with more complex credit assessment challenges. With the advancement of science and technology, machine learning algorithms have proven to be superior in the process of creditworthiness assessment. This research utilizes two boosting algorithms, namely AdaBoost and XGBoost, in classifying credit loan payment performance. The performance of credit loan payments is divided into two classes: Good and Bad, where Good refers to debtors who make credit loan payments no more than 3 months past the due date, and Bad refers to those making payments more than 3 months past the due date. In the implementation of the method, data on credit loan payment history, specifically for digital Micro Business Credit (KUM) products obtained from PT Bank X Tbk., were used, totaling 2190 observations. The number of observations classified as Good accounted for 89.36% of the total, leaving 10.64% in the Bad category. This study employed the Synthetic Minority Oversampling Technique (SMOTE) to address the imbalanced dataset. The performance of the method was evaluated using the metrics of accuracy, sensitivity, specificity and AUC-ROC, considering different proportions of training data, ranging from 50% to 90%. To enhance the reliability of the results, the method simulation was conducted five times. The findings indicate that XGBoost outperforms AdaBoost in classifying credit loan payment performance, as evidenced by its superior performance across all evaluation metrics and all five simulations, achieving an average accuracy of 87.71%, sensitivity of 92.29%, specificity of 44,12%, and AUC-ROC of 81.16%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachel Aurellia Irawan
"Tantangan besar dalam mengembangkan model prediktif yang baik untuk prediksi klaim asuransi kendaraan bermotor adalah adanya missing values dalam data. Berbagai algoritma pembelajaran mesin telah diteliti untuk mengatasi masalah missing values ini. XGBoost merupakan salah satu teknik Gradient Boosting Decision Tree (GBDT) yang terbukti unggul dibandingkan metode imputasi seperti K-Nearest Neighbors (KNN) dan mean imputation. Namun, XGBoost memiliki beberapa keterbatasan, seperti waktu pemrosesan yang lebih panjang dan perlunya untuk melakukan one-hot encoding pada variabel kategorikal. Keterbatasan yang dimiliki oleh metode XGBoost dapat diatasi oleh metode LightGBM. Penelitian ini bertujuan untuk menganalisis kinerja metode XGBoost dan LightGBM dalam memprediksi klaim asuransi kendaraan bermotor pada data yang mengandung missing values. Dataset yang digunakan berasal dari klaim asuransi kendaraan bermotor perusahaan Porto Seguro yang terdiri yang memiliki missing values hingga 70%. Evaluasi kinerja dilakukan menggunakan metrik Normalized Gini score dan training time. Penelitian ini membandingkan dua pendekatan dalam menangani missing values: tanpa imputasi dan dengan imputasi mean. Hasil penelitian menunjukkan bahwa metode XGBoost tanpa imputasi missing values memberikan kinerja terbaik dengan nilai Normalized Gini tertinggi sebesar 0,2735. Namun, XGBoost tanpa imputasi membutuhkan waktu training yang lebih lama, yaitu rata-rata 15,5841 detik. Metode LightGBM tanpa imputasi juga menunjukkan kinerja yang baik dengan nilai Normalized Gini sebesar 0,2559 dan waktu training yang lebih singkat dengan rata-rata 4,0521 detik. Pada data tanpa imputasi, XGBoost secara mutlak tetap menunjukkan kinerja terbaik dengan nilai Normalized Gini tertinggi baik pada data yang tidak diimputasi maupun telah diimputasi. LightGBM, meskipun memiliki Normalized Gini yang sedikit lebih rendah, namun lebih efisien dalam waktu training dengan waktu training hampir 4 kali lebih cepat dibandingkan XGBoost. XGBoost tanpa imputasi memberikan hasil prediksi yang lebih akurat. LightGBM tanpa imputasi menunjukkan efisiensi dalam waktu training dengan sedikit penurunan dalam Normalized Gini (6,88%) dibandingkan dengan XGBoost tanpa imputasi. Disimpulkan bahwa jika prioritas utama adalah kemampuan prediktif yang lebih baik, maka XGBoost tanpa imputasi adalah pilihan yang lebih baik. Namun, jika efisiensi waktu training menjadi prioritas utama, maka LightGBM tanpa imputasi dapat menjadi alternatif yang sangat baik karena mampu melakukan proses training dengan lebih cepat secara signifikan tanpa kehilangan kemampuan prediktif (dalam konteks ini Normalized Gini) yang signifikan.

The primary challenge in developing robust predictive models for motor vehicle insurance claims lies in the presence of missing values within the dataset. Several machine learning algorithms have been explored to address this issue, with XGBoost—a gradient-boosted decision tree (GBDT) technique—demonstrating superior performance compared to traditional imputation methods such as K-Nearest Neighbors (KNN) and mean imputation. However, XGBoost is constrained by certain limitations, including longer processing times and the requirement for one-hot encoding of categorical variables. These limitations can be mitigated by employing the LightGBM method. This study aims to evaluate the performance of XGBoost and LightGBM in predicting motor vehicle insurance claims in datasets containing missing values. The dataset utilized in this research is sourced from Porto Seguro’s motor vehicle insurance claims, which contains up to 70% missing values. The model performance is assessed using two key metrics: the Normalized Gini score and training time. The study compares two approaches to handling missing values: without imputation and with mean imputation.The findings reveal that XGBoost without imputation achieves the highest predictive performance, with a Normalized Gini score of 0.2735. However, this approach also entails a longer training time, averaging 15.5841 seconds. LightGBM without imputation, while producing a slightly lower Normalized Gini score of 0.2559, demonstrates superior efficiency, with a significantly reduced training time of 4.0521 seconds on average. In scenarios without imputation, XGBoost consistently delivers the highest predictive performance, both for non-imputed and imputed data. While LightGBM exhibits a marginally lower Normalized Gini score, it offers substantial improvements in training efficiency, with training times nearly four times faster than those of XGBoost. In conclusion, XGBoost without imputation provides the most accurate predictions, making it the preferable choice when predictive performance is the primary objective. However, when the primary concern is training time efficiency, LightGBM without imputation emerges as a strong alternative, offering a significant reduction in training time with only a modest decrease (6.88%) in predictive accuracy, as measured by the Normalized Gini score, compared to XGBoost without imputation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagus Nurhuda
"Seiring bertambahnya jumlah pelanggan listrik di Indonesia menjadikan persentase kerugian dari susut non-teknis pada Perusahaan Listrik Negara (PLN) semakin besar tiap tahunnya yang menyebabkan berkurangnya keuntungan. Berbagai upaya telah dilakukan oleh PLN dengan membentuk tim Penertiban Pemakaian Tenaga Listrik (P2TL) berdasarkan informasi indikasi pencurian dan kelainan maupun pemilihan manual pada pelanggan pascabayar. Namun upaya yang dilakukan PLN sejauh ini masih belum efektif dalam penentuan Target Operasi (TO) karena membutuhkan waktu yang lama dengan hasil akurasi yang kecil. Tujuan dari penelitian ini adalah untuk menganalisis efektivitas dari data pemakaian listrik (kWh) pelanggan dalam pemodelan machine learning menggunakan algoritma Extreme Gradient Boosting (XGBoost) menggunakan metode feature engineering dan hyperparameter tuning. Hasil dari penelitian ini membuktikan bahwa penggunaan riwayat pemakaian listrik efektif dalam pemodelan hingga tingkat akurasi mencapai 80% pada penggunaan data jam nyala dan 82% pada penggunaan data gabungan jam nyala dengan metode statistik dan bantuan hyperparameter tuning. Dengan hasil ini dapat membantu PLN untuk menentukan TO pada pelanggan pascabayar dengan lebih mudah dan efisien menggunakan teknologi machine learning.

As the number of electricity customers in Indonesia increases, the percentage of non-technical losses in PLN (Perusahaan Listrik Negara) has been growing every year, leading to a decrease in profits. Various efforts have been made by PLN through the establishment of the Penertiban Pemakaian Tenaga Listrik (P2TL) team based on indications of theft or abnormalities and manual selection of postpaid customers. However, PLN's efforts so far have been ineffective in determining the Operational Target (TO) due to the long time required and low accuracy. The aim of this research is to analyze the effectiveness of customer electricity usage data (kWh) in machine learning modeling using the Extreme Gradient Boosting (XGBoost) algorithm with feature engineering and hyperparameter tuning methods. The results of this study demonstrate that the use of electricity usage history is effective in modeling, achieving an accuracy rate of 80% when using on/off hours data and 82% when using a combination of on/off hours data with statistical methods and the assistance of hyperparameter tuning. These findings can assist PLN in determining the TO for postpaid customers more easily and efficiently using machine learning technology."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roviani Amelia
"Curah hujan menjadi faktor cuaca yang sangat berpengaruh terhadap aktivitas penerbangan, mulai dari saat pesawat akan lepas landas, ketika berada di udara, dan saat akan melakukan pendaratan. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan sebuah model prediksi curah hujan di Bandara Silangit, Tapanuli Utara yang memiliki variasi curah hujan yang tinggi, karena dipengaruhi oleh posisi geografisnya di dekat garis khatulistiwa. Model prediksi curah hujan tersebut dibangun dengan memanfaatkan data dari AWOS dan menerapkan algoritma XGBoost dan selanjutnya dioptimasi dengan menggunakan dua metode, yaitu random search dan bayesian optimization untuk mencari kombinasi hyperparameter optimal dan meningkatkan akurasi model prediksi tersebut. Hasil penelitian menunjukkan bahwa model XGBoost sebelum dioptimasi berhasil mencapai akurasi prediksi 74.8%. Sementara itu, dengan hyperparameter tuning melalui metode bayesian optimization, akurasi model meningkat hingga 76.6%, dengan kombinasi nilai hyperparameter optimal yang didapatkan, diantaranya max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, dan colsample_bytree: 0.88. Temuan ini menegaskan potensi yang besar dalam penggunaan teknologi canggih untuk prediksi curah hujan dalam rangka mendukung keselamatan penerbangan di wilayah dengan kondisi cuaca yang kompleks dan dinamis.

Rainfall is a weather factor that significantly affects aviation activities, from takeoff and in-flight operations to landing. Therefore, this study aims to develop a rainfall prediction model for Silangit Airport in North Tapanuli, an area with high rainfall variability due to its geographic location near the equator. The rainfall prediction model is constructed using data from the Automated Weather Observing System (AWOS) and employs the XGBoost algorithm, which is further optimized using two methods: random search and Bayesian optimization. These methods are used to find the optimal hyperparameter combinations and improve the model's prediction accuracy.The results of the study show that the XGBoost model achieved a prediction accuracy of 74.8% before optimization. However, with hyperparameter tuning using Bayesian optimization, the model's accuracy increased to 76.6%. The optimal hyperparameter values obtained were max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, and colsample_bytree: 0.88. These findings highlight the significant potential of advanced technology in predicting rainfall, thereby supporting aviation safety in regions with complex and dynamic weather conditions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Rasyid Rabbani
"Fraud atau kecurangan merupakan salah satu permasalahan yang masih dihadapi oleh industri asuransi dan masih memberikan kerugian yang sangat besar bagi industri ini. Biaya yang dikeluarkan pun untuk mengatasi permasalahan ini masih cukup besar, untuk itu dikembangkanlah sebuah model machine learning untuk membantu pencegahan terjadinya fraud pada asuransi. Salah satu model yang sedang sangat berkembang adalah model Imbalance-XGBoost, penelitian ini dilakukan untuk meninjau kemampuan model Imbalance-XGBoost dalam mendeteksi fraud sebagai langkah pencegahan fraud pada asuransi. Penelitian ini berhasil mendapati bahwa Imbalance-XGBoost memiliki performa yang lebih baik jika dibandingkan dengan model dasarnya yaitu XGBoost tanpa penanganan kelas tidak seimbang.

Fraud or dishonesty is one of the persistent challenges faced by the insurance industry and continues to result in significant losses for the industry. The costs incurred to address this issue are also quite substantial. Therefore, a machine learning model has been developed to assist in preventing insurance fraud. One of the models that is currently gaining traction is the Imbalance-XGBoost model. This research was conducted to assess the ability of the Imbalance-XGBoost model in detecting fraud as a preventive measure in insurance. The study found that Imbalance-XGBoost performs better compared to its base model, XGBoost, which does not handle imbalanced classes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhitya Dwi Nugraha
"Ledakan batu merupakan kecelakaan destruktif yang cukup sering terjadi pada tambang bawah tanah. Seiring dengan berkembangnya teknologi, machine learning hadir sebagai alternatif solusi yang dapat dimanfaatkan dalam langkah preventif atas kasus ledakan batu. Penelitian ini menggunakan GWO-SVM dan XGBoost sebagai model machine learning dalam klasifikasi ledakan batu dan intensitasnya pada tambang bawah tanah. Grey Wolf Optimization (GWO) digunakan sebagai optimizer dari parameter SVM. Intensitas ledakan batu dibedakan atas tidak ada ledakan batu, lemah, sedang dan kuat. Dalam implementasi model, digunakan 467 kasus ledakan batu yang dikumpulkan dari berbagai sumber. Fitur yang digunakan pada penelitian ini meliputi tegangan maksimal tangensial, kekuatan tekan uniaksial, kekuatan tarik uniaksial, koefisien tegangan, koefisien kerapuhan batuan, dan indeks regangan elastis. Sebelum implementasi model dilakukan data preprocessing yang meliputi imputasi missing values, menghapus outlier, normalisasi fitur dan resampling data. Kinerja model dievaluasi berdasarkan nilai metrik accuracy, precision, recall, dan f1-score dengan memerhatikan running time dan proporsi data training berkisar dari 50% hingga 90%. Hasil penelitian menunjukkan bahwa GWO-SVM mengungguli XGBoost baik dalam klasifikasi ledakan batu dengan accuracy 98.0392%, precision 97.8495%, recall 98.2609%, dan f1-score 98.0161% serta klasifikasi intensitas ledakannya dengan accuracy 75.8242%, precision 75.1473%, recall 75.3115%, dan f1-score 75.2150%.

Rockburst is a destructive accident that frequently occurs in underground mines. With the advancement of technology, machine learning has emerged as an alternative solution that can be utilized to measures against rockbursts. This research employs GWO-SVM and XGBoost as machine learning models for the classification of rockburst and its intensity in underground mines. Grey Wolf Optimization (GWO) is used as an optimizer for SVM parameters. The intensity of a rockburst is classified into four categories: no rockburst, weak, moderate, and strong. The implementation of the model utilizes 476 cases of rockburst collected from various sources. The features used in this study include maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, stress coefficient, rock brittleness coefficient, and elastic strain index. Before implementing the model, data preprocessing is conducted, which includes imputing missing values, removing outliers, feature normalization, and data resampling. The performance of the model is evaluated based on metrics such as accuracy, precision, recall, and f1-score with various training data proportions ranging from 50% to 90%. The research results indicate that GWO-SVM outperforms XGBoost in both the classification of rockburst with 98.0392% accuracy, 97.8495% precision, 98.2609% recall, and 98.0161% f1-score as well as intensity with 75.8242% accuracy, 75.1473% precision, 75.3115% recall, and 75.2150% f1-score.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisrina Alifah Sauda
"Beras merupakan bahan pangan pokok dengan tingkat kebutuhan tinggi di kawasan Asia Tenggara, termasuk Indonesia yang menjadi produsen padi terbesar di kawasan ini. Sektor pertanian, khususnya produksi padi, berperan penting dalam mendukung misi Sustainable Development Goals (SDGs) untuk mencapai ketahanan pangan. Namun, tantangan seperti alih fungsi lahan dan perubahan iklim mengancam keberlanjutan produksi padi, termasuk di Kabupaten Indramayu, salah satu lumbung padi utama di Jawa Barat. Untuk mendukung pengelolaan lahan pertanian yang berkelanjutan, pemetaan padi berbasis pengindraan jauh menjadi solusi yang efisien, memanfaatkan teknologi satelit seperti Sentinel-2 dan Landsat-8. Penelitian ini bertujuan untuk memetakan distribusi padi di Kabupaten Indramayu dengan mengintegrasikan metode Convolutional Neural Network (CNN) untuk ekstraksi fitur spektral-temporal dan algoritma Extreme Gradient Boosting (XGBoost) untuk klasifikasi. Hasil penelitian menunjukkan bahwa skema fitur terbaik, yaitu kombinasi data Raw Spectral Bands dengan NDVI, menghasilkan tingkat Overall Accuracy tertinggi sebesar 98,90%. Selain itu, metrik evaluasi lainnya seperti Recall, Precision, dan F1-Score juga menunjukkan hasil tertinggi, masing-masing sebesar 98,90%, yang mencerminkan kemampuan model yang konsisten dalam membedakan area padi dan non-padi. Model CNN-XGBoost menunjukkan kinerja yang lebih baik dibandingkan model CNN murni, dengan akurasi yang lebih tinggi dan hasil evaluasi yang lebih optimal. Dengan memanfaatkan data multispektral dan multitemporal dari kedua satelit, penelitian ini memberikan kontribusi signifikan dalam mendukung pengambilan keputusan berbasis data untuk pengelolaan pertanian yang berkelanjutan, sekaligus memperkuat upaya ketahanan pangan nasional.

Rice is a staple food with high demand in Southeast Asia, including Indonesia, which is the largest rice producer in the region. The agricultural sector, particularly rice production, plays a crucial role in supporting the Sustainable Development Goals (SDGs) for achieving food security. However, challenges such as land conversion and climate change threaten the sustainability of rice production, including in Indramayu Regency, one of the main rice granaries in West Java. To support sustainable agricultural land management, rice mapping based on remote sensing provides an efficient solution, utilizing satellite technologies such as Sentinel-2 and Landsat-8. This study aims to map the distribution of rice in Indramayu Regency by integrating the Convolutional Neural Network (CNN) method for spectral-temporal feature extraction and the Extreme Gradient Boosting (XGBoost) algorithm for classification. The results show that the best feature scheme, a combination of Raw Spectral Bands and NDVI, achieves the highest Overall Accuracy of 98.90%. Additionally, other evaluation metrics such as Recall, Precision, and F1-Score also show the highest values, each at 98.90%, reflecting the model's consistent ability to distinguish between rice and non-rice areas. The CNN-XGBoost model outperforms the pure CNN model, with higher accuracy and better evaluation results. By utilizing multispectral and multitemporal data from both satellites, this study significantly contributes to data-driven decision-making for sustainable agricultural management, while strengthening national food security efforts."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gregorino Al Josan
"Cardiovascular diseases (CVD) merupakan salah satu penyebab utama kematian di dunia. WHO memperkirakan angka 17,9 juta kematian pada tahun 2021 disebabkan oleh CVD. Di Indonesia sendiri, prevalensi penyakit jantung mencapai angka 1,5% atau sekitar 2,7 juta orang pada tahun 2018. CVD mencakup berbagai macam jenis penyakit jantung. Salah satu tipe penyakit jantung tersebut adalah congestive heart failure. Congestive heart failure (CHF) adalah kondisi dimana jantung tidak dapat memompa darah yang cukup ke seluruh bagian tubuh. CHF dapat terjadi dikarenakan melemahnya kemampuan otot jantung untuk memompa darah sehingga mempengaruhi heart rate atau detak jantung manusia. Heart rate dapat direpresentasikan menggunakan sinyal yang dapat diukur menggunakan alat rekaman electrocardiogram (ECG/EKG). EKG adalah rekaman aktivitas elektrik jantung yang ditangkap melalui bagian permukaan tubuh. Heart rate variability (HRV) diketahui berkorelasi dengan berbagai penyakit jantung dan salah satunya adalah CHF. Dengan berkembangnya teknologi, terdapat beberapa penelitian mengenai implementasi artificial intelligence (AI) untuk mendeteksi keberadaan CHF menggunakan model machine learning dan HRV sebagai fitur bagi model. Pada penelitian ini, akan dibangun dan dievaluasi kinerja model XGBoost untuk mendeteksi eksistensi penyakit CHF pada short-term HRV dari rekaman EKG 5 menit. Dataset yang digunakan berasal dari empat database yang berbeda yang diambil dari situs PhysioNet, yaitu NSRDB dan NSR2DB sebagai kelas sehat dan CHFDB dan CHF2DB sebagai kelas CHF. Masing-masing database memiliki rekaman long-term EKG. Seluruh rekaman tersebut dilakukan segmentasi selama 5 menit pada 2 jam pertama rekaman. Dari hasil segmentasi rekaman 5 menit tersebut akan dihitung nilai HRV yang akan menjadi fitur bagi model XGBoost. XGBoost dilatih menggunakan kombinasi teknik Grid Search dan K-Fold Cross Validation dengan nilai 𝐾 = 10. Terdapat 4 metrik yang dijadikan objektif optimisasi Grid Search, yaitu akurasi, sensitivitas, spesifisitas, dan skor AUC. XGBoost yang dilatih dengan mengoptimasi akurasi berhasil mencapai nilai akurasi sebesar 0,954, sensitivitas sebesar 0,935, spesifisitas sebesar 0,96, dan skor AUC sebesar 0,947. XGBoost yang dilatih dengan mengoptimasi sensitivitas berhasil mencapai nilai akurasi sebesar 0,966, sensitivitas sebesar 0,977, spesifisitas sebesar 0,963, dan skor AUC sebesar 0,97. XGBoost yang dilatih dengan mengoptimasi spesifisitas berhasil mencapai nilai akurasi sebesar 0,962, sensitivitas sebesar 0,931, spesifisitas sebesar 0,971, dan skor AUC sebesar 0,951. Kemudian XGBoost yang dilatih dengan mengoptimasi skor AUC berhasil mencapai nilai akurasi sebesar 0,955, sensitivitas sebesar 0,935, spesifisitas sebesar 0,962, dan skor AUC sebesar 0,948.

Cardiovascular diseases (CVD) is one of the major causes of death in the world. WHO estimated that 17.9 million of deaths during 2021 are caused by CVD. In Indonesia alone, the prevalence of heart diseases reached 1.5% or around 2,7 million people in 2018. CVD consists of various types of heart disease. Congestive heart failure is one of them. Congestive heart failure (CHF) is a condition where the heart cannot pump enough blood for the entire body. CHF can occur due to a weakening of the heart muscle's ability to pump blood, thereby affecting the human heart rate. Heart rate can be represented using signal that can be measured using electrocardiogram (ECG/EKG) recording. EKG is a recording of the heart's electrical activity captured through the surface of the body. Heart rate variability (HRV) have been known to be correlated with various heart diseases with CHF is one of it. With the advance of technology, there have been various research regarding the implementation of artificial intelligence (AI) to detect the presence of CHF using machine learning model and HRV as features for the model. In this research, we built and evaluated the performance of XGBoost model to detect the existence of CHF on short-term HRV from 5 minutes EKG recording. The dataset came from four different databases that can be accessed from PhysioNet website. Those are NSRDB and NSR2DB datasets to represent healthy class and CHFDB and CHF2DB to represent CHF class. Each database contains long-term EKG. All records are segmented by 5 minutes on the first 2 hours of the recording. HRV metrics are calculated from those 5 minutes segments to become features for the XGBoost model. XGBoost was trained using a combination of Grid Search and K-Fold Cross Validation techniques with 𝐾 = 10. There are 4 metrics that become the objective scoring function for the Grid Search. Those are accuracy, sensitivity, specificity, and AUC score. XGBoost trained to optimize accuracy managed to achieve 0.954 accuracy, 0.935 sensitivity, 0.96 specificity, and 0.947 AUC score. XGBoost trained to optimize sensitivity managed to achieve 0.966 accuracy, 0.977 sensitivity, 0.963 specificity, and 0.97 AUC score. XGBoost trained to optimize specificity managed to achieve 0.962 accuracy, 0.931 sensitivity, 0.971 specificity, and 0.951 AUC score. Lastly, XGBoost trained to optimize AUC score managed to achieve 0.955 accuracy, 0.935 sensitivity, 0.962 specificity, and 0.948 AUC score."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teresa Yubilea Koswari
"Asuransi merupakan bentuk pengalihan risiko dengan cara mendistribusikan risiko individu menjadi risiko kolektif. Pemasukan utama perusahaan asuransi adalah dari penjualan polis asuransi. Metode penjualan yang lazim digunakan pada asuransi maupun industri finansial lainnya adalah cross-selling. Cross-selling adalah proses menawarkan produk tambahan kepada orang yang sudah menjadi pelanggan perusahaan yang bersangkutan. Sangat penting bagi perusahaan asuransi untuk memiliki kemampuan memprediksi secara akurat karakteristik calon pelanggan yang sekiranya akan tertarik membeli suatu produk yang sedang ingin dipasarkan. Untuk dapat mengetahui karakteristik pelanggan potensial berdasarkan data perusahaan yang pada umumnya berskala besar, diusulkan untuk menggunakan machine learning. Hingga saat ini, metode machine learning yang  populer digunakan untuk mengolah data tabular adalah XGBoost. Pada penelitian ini, digunakan metode XGBoost untuk memprediksi hasil cross-selling produk asuransi dan kemudian dibandingkan dengan metode berbasis pohon lainnya, yaitu Decision Tree dan Random Forest, dari segi sensitivity, specificity, dan AUC-ROC. Diperoleh bahwa XGBoost unggul pada metrik specificity dan AUC-ROC. Selanjutnya, hasil simulasi terbaik dari setiap model diinterpretasikan menggunakan feature importance berdasarkan gain agar diperoleh fitur yang menjadi faktor penting dalam memprediksi cross-selling asuransi. Dengan adanya tahap interpretasi ini, diharapkan metode yang digunakan pada penelitian ini dapat diterima dan berguna bagi industri asuransi.

Insurance is a form of risk transfer by distributing individual risks into collective risks. The main income of insurance companies is from the sale of insurance policies. The sales method commonly used in the insurance and other financial industries is cross-selling. Cross-selling is the process of offering additional products to existing customers of the company. It is very important for insurance companies to have the ability to accurately predict the characteristics of potential customers who will be interested in buying a product that is being marketed. To find out the characteristics of potential customers based on company’s data, which are generally in large scale, it is proposed to use machine learning method. Until now, the most popular machine learning method used to process tabular data is XGBoost. In this study, the XGBoost method was used to predict cross-selling results of insurance products and then compared with other tree-based models, the Decision Tree and Random Forest, in terms of sensitivity, specificity, and AUC-ROC. It was found that XGBoost excels in specificity and AUC-ROC metrics. Furthermore, the best simulation results from each model are interpreted using feature importance based on gain to obtain features that are important factors in predicting insurance cross-selling. So, with this interpretation step done, it is hoped that the method used in this study can be accepted and useful for the insurance industry.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>