Dalam industri perbankan, penilaian kredit yang akurat merupakan kunci dalam mengelola risiko kredit. Perkembangan ekonomi digital telah membawa inovasi dalam proses pemberian kredit yang ditandai dengan munculnya Layanan Jasa Pinjam Meminjam Uang Berbasis Teknologi Informasi. Hal ini membuat bank dihadapkan pada tantangan penilaian kredit yang lebih kompleks. Seiring perkembangan ilmu pengetahuan dan teknologi, algoritma machine learning telah terbukti memiliki kinerja yang unggul dalam proses penilaian kelayakan kredit. Penelitian ini menggunakan dua algoritma boosting, yaitu AdaBoost dan XGBoost dalam klasifikasi kinerja pembayaran pinjaman kredit. Kinerja pembayaran pinjaman kredit dibedakan menjadi dua kelas, yaitu Good dan Bad dengan kriteria Good adalah debitur yang melakukan pembayaran pinjaman kredit tidak lebih dari 3 bulan dari batas jatuh tempo dan Bad adalah debitur yang melakukan pembayaran pinjaman kredit lebih dari 3 bulan dari batas jatuh tempo. Dalam implementasi metode, digunakan data riwayat pembayaran pinjaman kredit khususnya untuk produk Kredit Usaha Mikro (KUM) digital yang diperoleh dari PT Bank X Tbk. dengan jumlah data berjumlah 2190 observasi. Jumlah observasi yang termasuk dalam kelas Good mencapai 89,36% dari total keseluruhan observasi, menyisakan 10,64% yang termasuk dalam kelas Bad. Pada penelitian ini digunakan metode Syntetic Minority Oversampling Technique (SMOTE) untuk mengatasi dataset yang tidak seimbang. Kinerja metode dievaluasi menggunakan nilai metrik accuracy, sensitivity, specificity, dan AUC-ROC dengan mempertimbangkan proporsi data training yang berbeda, mulai dari 50% sampai dengan 90%. Untuk meningkatkan keandalan hasil, simulasi metode dilakukan sebanyak lima kali. Hasil penelitian ini menunjukkan bahwa XGBoost mengungguli AdaBoost dalam klasifikasi kinerja pembayaran pinjaman kredit, terbukti dari perolehan kinerja yang lebih baik pada mayoritas metrik evaluasi dan kelima simulasi yang dilakukan, dengan rata-rata accuracy sebesar 87,71%, sensitivity sebesar 92,29%, specificity sebesar 44,21%, dan AUC-ROC sebesar 81,16%.
In the banking industry, accurate credit assessment is key to managing credit risk. The development of the digital economy has brought innovations in the credit granting process, marked by the emergence of Financial Technology-Based Money Lending Services. This presents banks with more complex credit assessment challenges. With the advancement of science and technology, machine learning algorithms have proven to be superior in the process of creditworthiness assessment. This research utilizes two boosting algorithms, namely AdaBoost and XGBoost, in classifying credit loan payment performance. The performance of credit loan payments is divided into two classes: Good and Bad, where Good refers to debtors who make credit loan payments no more than 3 months past the due date, and Bad refers to those making payments more than 3 months past the due date. In the implementation of the method, data on credit loan payment history, specifically for digital Micro Business Credit (KUM) products obtained from PT Bank X Tbk., were used, totaling 2190 observations. The number of observations classified as Good accounted for 89.36% of the total, leaving 10.64% in the Bad category. This study employed the Synthetic Minority Oversampling Technique (SMOTE) to address the imbalanced dataset. The performance of the method was evaluated using the metrics of accuracy, sensitivity, specificity and AUC-ROC, considering different proportions of training data, ranging from 50% to 90%. To enhance the reliability of the results, the method simulation was conducted five times. The findings indicate that XGBoost outperforms AdaBoost in classifying credit loan payment performance, as evidenced by its superior performance across all evaluation metrics and all five simulations, achieving an average accuracy of 87.71%, sensitivity of 92.29%, specificity of 44,12%, and AUC-ROC of 81.16%.