Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75691 dokumen yang sesuai dengan query
cover
Prima Haikal Hakim
"Pemeliharaan berfungsi untuk memperpanjang umur aset atau barang. Pemeliharaan dibagi menjadi empat klasifikasi yaitu reaktif, preventif, proaktif, dan prediktif. Pemeliharaan preventif bertujuan untuk meminimalkan risiko kegagalan dengan melakukan pemeliharaan secara berkala. Dalam pemeliharaan preventif, hal-hal yang perlu dicari adalah Median Time to Failure (MTTF), Distribusi Kegagalan, Analisis reliabilitas, Kurva Hazard dan Cumulative Failure. Analisis reliabilitas adalah estimasi benda tetap berfungsi melewati waktu tertentu. Model yang biasanya digunakan adalah reliabilitas parametrik, yang menggunakan pendekatan distribusi dalam perhitungan reliabilitas. Metode yang digunakan umumnya adalah Maximum Likelihood Estimation (MLE). Objek penelitian yang digunakan adalah mesin vertical packaging dalam pengemasan makanan ringan. Penelitian berfokus kepada reliabilitas mesin dan suku cadangnya (Pin Bushing, Thermocouple, Heater, dan lainnya) serta failure mode terhadap reliabilitas mesin. Analisis dimulai dengan Fault Tree Analysis (FTA) untuk membuat hirarki failure mode yang ada. Failure mode berguna dalam pengelompokkan efek kegagalan terhadap distribusi. Hasil men unjukkan data berdistribusi Weibull CR (Competing Risk), yang menunjukkan failure mode jamak. Pada contoh pin bushing, ditemukan bahwa kurvanya paling mendekati hasil analisis mesin  Hasil analisis menunjukkan bahwa reliabilitas mesin pada 90% sekitar 150 jam dan 80% sekitar 480 jam. MTTF dari mesin yang digunakan mendekati 2500 jam.  Temuan lebih buruk daripada acuan, temuan dapat menjadi dasar improvement kepada pemeliharaan preventif. Temuan kurva hazard yang umum terjadi pada suku cadang elektronik juga muncul pada suku cadang mekanik yaitu “monotone decreasing hazard” dengan likelihood hazard selalu menurun sepanjang waktu

Maintenance functions to extend the life of assets or goods. Maintenance is divided into four classifications, namely reactive, preventive, predictive, proactive, and predictive. Preventive maintenance aims to minimize the risk of failure by carrying out regular maintenance. In preventive maintenance, the things you need to look for are Median Time to Failure (MTTF), Failure Distribution, Reliability Analysis, Hazard Curve, and Cumulative Failure. Reliability analysis is an estimate of whether an object will continue to function over a certain time. The model usually used is parametric reliability, which uses a distribution approach in calculating reliability. The method used generally is Maximum Likelihood Estimation (MLE). The research object used is a vertical packaging machine for packaging snacks. The research focuses on the reliability of the machine and its spare parts (Pin Bushing, Thermocouple, Heater, etc.) as well as failure modes on machine reliability. The analysis begins with Fault Tree Analysis (FTA) to create a hierarchy of existing failure modes. Failure mode is useful in grouping the effects of failure on distribution. The results show that the data has a Weibull CR distribution, which indicates multiple failure modes. In the example of the pin bushing, it was found that the curve was closest to the engine analysis results. The analysis results showed that engine reliability at 90% was around 150 hours and 80% was around 480 hours. The MTTF of the engine being used  is close to 2500 hours. Even though the results are in contrast to other research, the findings can be the basis for improvements to preventive maintenance. The common hazard curve finding that occurs in electronic spare parts also appears in mechanical spare parts, namely "monotone decreasing hazard" with the likelihood hazard always decreasing over time."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rumere, Faransina A.O.
"Analisis regresi merupakan salah satu teknik dalam statistika yang digunakan untuk mengetahui hubungan antar variabel respon dan satuatau lebih variabel regressor. Metode penaksiran parameter regresi yang umum digunakan adalah metode least square. Dalam penaksiran parameter regresi, banyak permasalahan yang muncul salah satunya adalah multikolinearitas. Multikolinearitas menghasilkan taksiran yang tidak stabil, sehingga diperlukan metode lain untuk mengatasi multikolinearitas yang diperkenalkan oleh Hoerl dan Kennard 1970 yaitu metode ridge regression dengan cara kerjanya adalah menambahkan konstanta bias ridge pada matriks X 39;X. Sarkar 1992 dan Grob 2003 mengembangkan metode tersebut dengan memanfaatkan informasi prior dari parameter - dan memperkenalkan metode restricted ridge regression. Berger 1980 mendefinisikan informasi prior untuk parameter - adalah suatu informasi non sampel yang muncul dari pengalaman masa lalu dan keputusan dari ahli dengan situasi yang hampir sama dan memuat parameter ? yang sama. Dalam skripsi ini penggunaan metode restricted ridge regression diaplikasikan untuk mengatasi multikolinearitas pada data Portland Cement dan menghasilkan MSE yang lebih kecil dibandingkan metode least square dan ridge regression.

Regression analysis is a technique in stastisticsto analyse the relationship between a response variable and one or more regressor variable's. Ordinary Least Square method is commonly used to estimate parameter's. Most frequently occurring problem in multiple linier regression analysis is the presence of multicolinearity. Multicollinearityin least square estimation produces estimation with large variance, so another method is needed to overcome the multicollinearity. Hoerl and Kennard 1970 introduced a new method called ridge regression by addingaconstant bias ridge to matrix X 39 X. Sarkar 1992 and Gro 2003 developed a method usingthe prior information of the parameter and introduced the restricted ridge regression method. Berger 1980 defined prior information of the parameter as a non sample information arising from past experiences and based on the opinions of an expertice with similar situations and containing the same parameters. This thesis will explain the use of restricted ridge regression method to overcome the presence of multicolinearity in regression model for Portland Cement dataset and produce smaller MSE than least square and ridge regression estimator.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tanjung, Alfian Rizqy
"Terdapat beberapa cara untuk memprediksi harga saham, ada yang menggunakan analisis runtun waktu, harga saham terdahulu, maupun menggunakan indikator teknis. Indikator teknis merupakan perhitungan matematis terhadap harga atau volume transaksi saham yang hasilnya dapat digunakan untuk memahami kecenderungan harga saham. Regresi ridge merupakan suatu metode regresi yang mampu mengatasi masalah dimana variabel-variabel regresornya tidak bebas linier. Regresi kernel ridge merupakan kombinasi antara regresi ridge dengan metode kernel dengan tujuan agar dapat memberikan hasil prediksi yang lebih baik. Pada skripsi ini, metode regresi ridge dan regresi kernel ridge akan diimplementasikan untuk memprediksi harga saham pada 12 perusahaan. Hasil percobaan menunjukkan bahwa metode regresi kernel ridge memberikan akurasi yang lebih baik daripada metode regresi ridge untuk beberapa perusahaan.

There are various way for predicting stock prices, some using time series analysis, past stock prices, or technical indicator. Technical indicator is a mathematical calculation over the stock prices or stock transaction volume that can be used to understand the stock price trend. Ridge regression is a regression method that can be used to solve the problem when some of the regressor variables are linearly dependent. Kernel ridge regression is a combination of ridge regression and kernel method in purpose to get better prediction. This skripsi will implement ridge regression and kernel ridge regression for stock prices forecasting of 12 companies. The result shows that kernel ridge regression gives better accuracy for stock price forecasting than ridge regression for some companies."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46703
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Kustituanto
Jogjakarta: BPFE, 1984
519 BAM s
Buku Teks SO  Universitas Indonesia Library
cover
Mohammad Farhan Qudratullah
Yogyakarta: Andi, 2013
519.536 MOH a (1);519.536 MOH a (2)
Buku Teks SO  Universitas Indonesia Library
cover
Sri Wahyuni
"Pencocokan suatu model logistik terhadap data binomial memerlukan penaksiran parameter dari model. Proses penaksiran parameter ini menggunakan keseluruhan pengamatan yang ada dalam data. Setelah taksiran parameter dihasilkan dan model tersebut digunakan untuk mencocokkan data, mungkin tidak setiap pengamatan dalam data sesuai dengan model. Hal tersebut dapat disebabkan karena data mengandung outlier, yaitu pengamatan yang nilainya jauh lebih besar atau lebih kecil jika dibandingkan dengan mayoritas pengamatan dalam data. Selain itu, ketidakcocokan model terhadap data dapat pula disebabkan karena kesalahan dalam pemilihan fungsi penghubung yang digunakan dalam model. Pada tugas akhir ini, dibahas suatu prosedur forward search untuk memeriksa kesesuaian data binomial pada model logistik sederhana. Plot dari statistik-statistik diagnostik yaitu residual deviansi dan statistik skor selama proses forward search digunakan untuk melihat sejauh mana pengaruh dari setiap pengamatan individual dalam data binomial. Statistik skor akan digunakan dalam pengujian kecukupan fungsi penghubung. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S27655
UI - Skripsi Open  Universitas Indonesia Library
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Rahayu
"Masalah yang sering terjadi dalam penelitian adalah adanya missing value padahal data yang lengkap diperlukan untuk mendapatkan hasil analisis yang menggambarkan populasi. Dalam pengolahan data, missing value sering terjadi pada analisis regresi. Analisis regresi merupakan suatu model prediksi dengan melihat hubungan antara variabel respon dan variabel prediktor. Missing value dalam analisis regresi dapat ditemukan baik pada variabel respon maupun variabel prediktor. Penelitian ini membahas imputasi missing value yang terjadi pada kedua variabel tesebut dengan menggunakan imputasi regresi. Algoritma Expectation Maximization (EM) merupakan metode penaksiran parameter regresi dengan menggunakan metode Maximum Likelihood Estimaton (MLE) pada data yang memiliki missing value. Untuk menyeimbangkan hasil taksiran parameter model regresi untuk setiap variabel, dilakukan proses penyeimbangan (balance process) untuk mendapatkan hasil taksiran parameter yang konvergen. Simulasi taksiran nilai variabel respon dan prediktor yang hilang dilakukan pada berbagai variasi persentase missingness. Metode penaksiran parameter regresi dengan menggunakan algoritma EM, dapat menghasilkan model yang menjelaskan data sebesar 87% hingga terjadi missing sebanyak 60%.

The problem that often occurs in research is the existence of missing values even though complete data is needed to obtain the results of analysis that describe the population. In processing data, missing values often occur in regression analysis. Regression analysis is a prediction model by looking at the relationship between response variables and predictor variables. Missing values in regression analysis can be found in both the response variable and predictor variable. This study discusses the imputation of missing values that occur in both variables using regression imputation. The Expectation Maximization (EM) algorithm is a method of estimating regression parameters using the Maximum Likelihood Estimaton (MLE) method on data that has missing value. To balance the estimated parameters of the regression model for each variable, a balance process is performed to obtain the results of the convergent parameter estimates. The estimated simulation of the value of the response variable and missing predictor was carried out in various variations in the percentage of missingness. The method of estimating regression parameters using the EM algorithm, can produce a model that explains the data by 87% until there is missing as much as 60%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayhan Fadilla
"Premi murni merupakan salah satu elemen penting untuk perusahaan asuransi. Penetapan premi murni yang sesuai dengan risiko kerugian dari calon pemegang polis menjadi salah satu faktor utama agar perusahaan tetap berjalan dan mampu berkompetisi dalam industri. Premi murni dapat ditentukan dengan menghitung ekspetasi dari besar klaim agregat yang dibagi dengan durasi kontrak asuransi. Namun, perlu diketahui bahwa premi murni juga dapat dipengaruhi oleh berbagai faktor risiko seperti umur, jenis kelamin, dan jenis pekerjaan dari nasabah. Salah satu metode untuk mengatasi masalah ini yaitu dengan membuat model regresi menggunakan generalized linear model Distribusi yang cocok untuk memodelkan premi murni adalah distribusi Compound Poisson-Gamma yang merupakan bagian dari distribusi Tweedie. Distribusi Tweedie merupakan distribusi yang mengeneralisasi distribusi lain yang termasuk ke dalam exponential dispersion family. Tujuan dari penelitian ini adalah untuk memodelkan premi murni menggunakan generalized linear model dengan asumsi respons berdistribusi Tweedie atau disebut regresi Tweedie. Dengan mengaplikasikan model ini pada data asuransi kecelakaan kendaraan didapat bahwa regresi Tweedie mampu menjelaskan premi murni dengan baik.

Pure premium is one of the essential elements for insurance companies. Calculate the appropriate pure premium based on the potential policyholder's risk of loss is crucial to ensure the company's operations and competitiveness in the industry. Pure premiums can be determined by calculating the expectations of large aggregate claims divided by the duration of the insurance contract. However, it should be noted that pure premiums can also be influenced by various risk factors such as age, gender, and the type of employment of the client. One method to address this issue is by creating a regression model using a generalized linear model. The suitable distribution to model of pure premium is the Compound Poisson-Gamma distribution, which is a part of the Tweedie distribution. Tweedie distribution generalizes other distributions that fall under the exponential dispersion models. The objective of this research is to model pure premium using a generalized linear model with assumption that the response follows a Tweedie distribution, known as Tweedie regression. The application of Tweedie regression model to automobile accident insurance data yielded promising results in explaining the pure premium."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irba Alifa Taqiyya
"Angka kematian bayi (AKB) didefinisikan sebagai jumlah kematian bayi di bawah usia satu tahun per 1000 kelahiran hidup pada satu tahun tertentu. Angka kematian bayi merupakan salah satu indikator penting yang dapat mencerminkan derajat kesehatan suatu masyarakat. Target angka kematian bayi pada Sustainable Development Goals (SDGs) yang berlaku sejak tahun 2015 sampai tahun 2030 adalah 12 kematian per 1000 kelahiran hidup. Berdasarkan hasil long form sensus penduduk BPS, AKB di Indonesia tahun 2022 adalah 17 kematian per 1000 kelahiran hidup, angka tersebut masih tergolong tinggi apabila dibandingkan dengan beberapa negara di ASEAN. Angka kematian bayi dipengaruhi oleh beberapa variabel. Analisis mengenai variabel-variabel yang memengaruhi AKB dapat dilakukan dengan analisis regresi linier klasik. Namun, nilai pengamatan seperti AKB dan variabel-variabel yang memengaruhinya memuat informasi lokasi (spasial), sehingga seringkali terjadi ketergantungan spasial antar pengamatan yang mengakibatkan asumsi saling bebas pada model regresi linier tidak terpenuhi. Oleh karena itu, pemodelan dapat dilakukan dengan menggunakan model regresi spasial yang memperhatikan keterkaitan antar lokasi. Tujuan dari penelitian ini adalah menganalisis ketergantungan spasial pada data AKB di  Pulau Jawa dan memodelkan AKB di Pulau Jawa tahun 2022 menggunakan General Nesting Spatial Model (GNSM) untuk menganalisis variabel-variabel yang memengaruhinya. Hasil uji autokorelasi spasial menggunakan uji Moran’s I menyimpulkan bahwa terdapat autokorelasi spasial pada variabel terikat (AKB), variabel bebas, dan pada residual model regresi linier. Berdasarkan nilai AIC dan, diperoleh kesimpulan General Nesting Spatial Model (GNSM) lebih baik dalam memodelkan Angka Kematian Bayi (AKB) di Pulau Jawa tahun 2022 dibandingkan Spatial Durbin Model (SDM) dan General Spatial Model(GSM).

Infant mortality rate (IMR) is defined as the number of deaths of infants under one year of age per 1000 live births in a given year. Infant mortality rate is one of the important indicators that can reflect the health level of a community. The infant mortality target in the Sustainable Development Goals (SDGs) that apply since 2015 to 2030 is 12 deaths per 1000 live births. Based on the results of the BPS long form population census, the IMR in Indonesia in 2022 is 17 deaths per 1000 live births, which is still relatively high compared to several countries in ASEAN. Infant mortality rates are influenced by several variables. Analysis of the variables that influence IMR can be done with classical linear regression analysis. However, observation values such as IMR and the variables that affect it contain location (spatial) information, so there is often spatial dependence between observations which results in the assumption of mutual independence in linear regression models not being met. Therefore, modeling can be done using spatial regression model that considers the interrelationships between locations. The purpose of this study is to analyze the spatial dependence of IMR data in Java Island and model IMR in Java Island in 2022 using the General Nesting Spatial Model (GNSM) to analyze the variables that affect it. The results of the spatial autocorrelation test using Moran's I test concluded that there is spatial autocorrelation in the dependent variable (IMR), independent variables, and in the residuals of the linear regression model. Based on the AIC and  values, it is concluded that General Nesting Spatial Model (GNSM) is better in modeling the Infant Mortality Rate (IMR) in Java Island in 2022 than Spatial Durbin Model (SDM) and General Spatial Model (GSM)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>