Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75738 dokumen yang sesuai dengan query
cover
Hanifah Sulasri
"Graf G terdiri atas himpunan simpul V(G) dan himpunan busur E(G). Graf G dengan V(G)={v_1,v_2,v_3,…,v_n} dan E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} disebut sebagai graf lintasan yang dinotasikan sebagai P_n. Pelabelan graceful (disebut juga sebagai β-valuation) adalah pemetaan injektif dari himpunan simpul dari G ke himpunan bilangan bulat {0,1,…,|E(G)|} sedemikian sehingga jika untuk setiap busur 𝑢𝑣 diberikan label |𝑓(𝑢) − 𝑓(𝑣)|, label tersebut berbeda untuk setiap busurnya. Pelabelan antiajaib dari graf G adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} sedemikian sehingga bobot simpul (jumlahan dari label busur yang hadir pada simpul yang diberikan) berbeda untuk tiap simpulnya. Pada perkembangannya, terdapat variasi pada pelabelan antiajaib, salah satunya adalah pelabelan simpul antiajaib lokal. Pelabelan antiajaib lokal adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} dengan bobot simpul yang berbeda untuk tiap simpul yang bertetangga. Nilai minimum dari banyaknya bobot berbeda pada pelabelan simpul antiajaib lokal pada graf G disebut sebagai bilangan kromatik dan dinotasikan sebagai χ_la (G). Untuk kelas graf lintasan, nilai χ_la (P_n )=3. Varian lain dari pelabelan antiajaib ialah pelabelan antiajaib yang diinduksi oleh pelabelan graceful. Pelabelan ini disebut sebagai pelabelan antiajaib graceful. Pelabelan-pelabelan yang telah disebutkan memberikan ide untuk konsep pelabelan antiajaib lokal graceful, yaitu pelabelan antiajaib graceful yang memiliki bobot simpul berbeda untuk tiap simpul yang bertetangga. Penelitian ini akan membahas pelabelan antiajaib lokal graceful untuk graf lintasan P_n. Kemudian, akan ditunjukkan pula bilangan kromatik χ_gla (P_n).

The graph G consists of a set of vertices V(G) and a set of edges E(G). A graph G with V(G)={v_1,v_2,v_3,…,v_n} and E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} is called a path graph and denoted as P_n . The graceful labeling (also known as β-valuation) is an injective mapping of the set of vertices from G to the set of integers {0,1,…,|E(G)|} such that if for each edge uv is assigned a label |f(u) - f (v)|, the label is different for each edge. The antimagic labeling of a graph G is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} such that the vertex weights (sum of the edge labels incident at a given vertex) are different for each vertex. In its development, there are variations on antimagic labeling, one of which is local antimagic vertex labeling. Local antimagic labeling is is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} with a different node weight for each neighboring vertex. The minimum value of the number of different weights in the local antimagic vertex labeling on a graph G is called the chromatic number and is denoted as χ_la (G). For path graph, the value of χ_la (P_n)=3. Another variant of antimagic labeling is an antimagic labeling which is induced by graceful labeling. This labeling is called graceful antimagic labeling. These labelings lead to the idea for the concept of graceful local antimagic labeling, namely graceful antimagic labeling that has different weight for each neighboring vertex. This research will discuss about graceful local antimagic labeling on path graphs P_n. It will also be shown the chromatic number χ_gla (P_n).

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzan
"Misalkan G = (V, E) adalah suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G), serta |V(G)| menyatakan banyak simpul dan |E(G)| menyatakan banyak busur. Pelabelan dari graf G adalah suatu pemetaan f dari himpunan simpul atau busur ke suatu himpunan label yang umumnya berisi bilangan bulat positif. Suatu pelabelan dari graf G disebut pelabelan total jika domain dari pemetaan tersebut adalah himpunan simpul dan himpunan busur. Suatu pelabelan dari graf G disebut pelabelan total busur antiajaib-(a,d) jika terdapat bijeksi f dari gabungan V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} sedemikian sehingga himpunan dari bobot busur {f(u)+f(uv)+f(v) | uv ∈ E(G)} sama dengan {a, a+d, …, a+(|E(G)|-1)d} untuk suatu bilangan bulat a > 0 dan d ≥ 0. Suatu pelabelan total busur antiajaib-(a,d) pada graf G disebut super jika label pada simpul adalah 1, 2, …, |V(G)|. Pada studi literatur ini, diberikan bukti lengkap dari pelabelan total super busur antiajaib-(a,d) dari gabungan dua graf lintasan dengan banyak simpul yang sama.

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G), where |V(G)| denotes the number of vertices and |E(G)| denotes the number of edges. A labeling of graph G is a mapping f from the vertex set or the edge set to a set of labels, which usually is positive integers. A labeling is called total labeling if the domain of the mapping is the union of vertex set and edge set. A labeling of graph G is called (a,d)-edge antimagic total labeling if there exists a bijection f from the union of V(G) and E(G) to the set {1, 2, …, |V(G)|+|E(G)|} such that the set of edge weights {f(u)+f(uv)+f(v)│uv ∈ E(G) } is {a, a+d, …, a+(|E(G)|-1)d} for some positive integer a > 0 and d ≥ 0. An (a,d)-edge antimagic total labeling of G is called super if the labels on the vertices are 1, 2, …, |V(G)|. This literature study will include complete proof of super (a,d)-edge antimagic total labeling of disjoint union of two paths."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Diyah Ayu Permata Sari
"Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan χsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu χsleat(Sfn) = n + 1.

Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by χsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which χsleat(Sfn) = n + 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alexandria Samantha Nicole
"Misalkan G suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G). Pelabelan antiajaib lokal pada graf G dengan |V(G)| simpul dan |E(G)| busur di definisikan sebagai fungsi f∶E(G)→{1,2,…,|E(G)|} sedemikian sehingga bobot dari sembarang dua simpul bertetangga u dan v berbeda, w(u)≠w(v), dengan w(u)= ∑_(e∈E(u))〖f(e)〗 dan E(u) adalah himpunan busur yang hadir pada simpul u. Terdapat suatu notasi χ_la (G) yang merupakan bilangan kromatik pada pelabelan antiajaib lokal yaitu minimum banyak bobot berbeda pada simpul di suatu graf. Graf lili dapat dinotasikan sebagai l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} dengan n≥3. Penelitian ini bertujuan untuk mengkonstruksi pelabelan antiajaib lokal pada graf lili l_n untuk mendapatkan nilai χ_la(l_n). Dari hasil penelitian, diperoleh bilangan kromatik pelabelan antiajaib lokal pada graf lili adalah χ_la(l_n)=2n+3.

Let G be a graph with vertex set V(G) and edge set E(G). A local antimagic labelling on graph G with |V(G)| vertices and |E(G)| edges is defined as a function f∶E(G)→{1,2,…,|E(G)|} such that the weights of any two adjacent vertices u and v are different, w(u)≠w(v), where w(u)= ∑_(e∈E(u))〖f(e)〗 and E(u) is the set of edges incident to vertex u. There is a notation χ_la (G), which represents the chromatic number in local antimagic labeling, defined as the minimum number of distinct weights on the vertices of a graph. The lilly graph can be denoted as l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} with n≥3. This research aims to construct a local antimagic labeling on lilly graph l_n to obtain the value of χ_la(l_n). The research results show that the chromatic number of the local antimagic labeling on the lilly graph is χ_la(l_n)=2n+3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Graf G=(V, E) adalah suatu sistem yang terdiri dari himpunan takkosong simpul V dan himpunan busur E. Pelabelan pada graf G adalah penetapan nilai pada simpul, busur, atau simpul dan busur dengan aturan tertentu. Pelabelan Skolem graceful γ pada graf G adalah suatu fungsi injektif γ : V {1,2,…,|V|} yang menginduksi fungsi bijektif γ’ : E {1,2,…,|E|} yang didifinisikan dengan γ(uv) = |γ(u) – γ(v)|, dimana u,vV dan uvE. Pelabelan pada graf G adalah fungsi injektif λ : V {0,1,2,…,|V|} yang menginduksi fungsi bijektif λ’ : E {1,2,…,|E|+1} yang didefinisikan dengan λ(uv) = |λ(u) – λ(v)|, dimana u,vV dan uvE.Pada skripsi ini dibuktikan bahwa graf 2Sn , gabungan graf bintang dengan graf sapu bentuk khusus memiliki pelabelan Skolem graceful dan pelabelan . Selain itu, gabungan graf bintang dengan graf cumi-cumi bentuk khusus memiliki pelabelan . Diberikan juga hubungan antara pelabelan Skolem graceful dan pelabelan pada gabungan 2 graf pohon."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirunnisa
"Misalkan ܩ(݌, ݍ) adalah graf dengan ݌ = |ܸ (ܩ) | dan ݍ = |ܧ(ܩ) | masing-masing adalah banyaknya simpul dan busur dari ܩ. Pelabelan simpul anti ajaib busur-(ܽ , ݀ ) dari graf ܩ (݌, ݍ) adalah pemetaan satu – satu ݂ : ܸ (ܩ) →{1, 2, 3, ... , ݌} sedemikian sehingga himpunan bobot busur {݂ (ݔ) + ݂ (ݕ): ݕݔ ∈
ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } dimana ܽ dan ݀ masing-masing bilangan bulat tak negatif. Pelabelan total busur anti ajaib−(ܽ , ݀ ) dari graf
ܩ(݌, ݍ) adalah pemetaan satu-satu pada ݂ : ܸ (ܩ) ∪ ܧ(ܩ) → {1, 2, ... , ݌ + ݍ} sedemikian sehingga himpunan bobot busur {݂ (ݔ) + ݂ (ݕݔ) + ݂ (ݕ) ∶ ݕݔ ∈
ܧ(ܩ)}={ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } untuk ܽ dan ݀ yang masing-masing bilangan bulat tak negatif. Jika ݂ (ܸ ) = {1, 2, ... , ݌} maka pelabelan f disebut pelabelan total busur anti ajaib super− (ܽ , ݀ ). Pada penelitian ini diberikan konstruksi pelabelan simpul anti ajaib busur−(ܽ , ݀ ) untuk ݀ = 1 dan pelabelan total anti ajaib busur super−(ܽ , ݀ ) untuk ݀ ∈ {0, 2} pada graf prisma yang diperumum, graf web tanpa simpul pusat, graf ilalang khusus.

Let ܩ(݌, ݍ) be a graph with ݌ = |ܸ (ܩ) | and ݍ = |ܧ(ܩ) | are the number of vertices and the number on edges of ܩ respectively. An edge anti magic vertex labeling on ܩ(݌, ݍ) is a bijective mapping ݂ : ܸ (ܩ) → {1, 2, 3, ... , ݌} so that the set of edge weight {݂ (ݔ) + ݂ (ݕ): ݕݔ ∈ ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } for positive integers ܽ and ݀ . An (ܽ , ݀ ) −edge antimagic total labeling on ܩ(݌, ݍ) is a bijective mapping ݂ : ܸ (ܩ) ∪ ܧ(ܩ) → {1, 2, ... , ݌ + ݍ}, so
that the set of edge weight {݂ (ݔ) + ݂ (ݕݔ) + ݂ (ݕ) ∶ ݕݔ ∈ ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } for positive integers ܽ and ݀ . If ݂ (ܸ ) = {1, 2, ... , ݌} then ݂ is called (ܽ , ݀ ) − super edge antimagic total labeling. This thesis gives the construction of (ܽ , ݀ ) −edge anti magic vertex labeling for ݀ = 1 and (ܽ , ݀ ) −super edge anti magic total labeling for ݀ ∈ {0, 2} on generalized prism graph, web without centre vertex graph, and special ilalang graph.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Khoirunnisa
"Salah satu cabang dari teori graf yang sedang berkembang saat ini adalah pelabelan graf. Pelabelan graf pertama kali di perkenalkan oleh Sedláček pada tahun 1963. Pelabelan adalah pemetaan satu-satu dari himpunan elemen-elemen graf ke himpunan bilangan (biasanya bilangan bulat positif) yang disebut label (Bača dan Miller, 2008). Beberapa jenis pelabelan yang dikenal sekarang ini antara lain pelabelan ajaib, pelabelan anti ajaib, pelabelan jumlah, pelabelan jumlah eksklusif, pelabelan graceful, pelabelan skolem graceful, pelabelan harmonis dan pelabelan harmonis ganjil. Pelabelan anti ajaib pun juga terdiri dari berbagai jenis, beberapa diantaranya adalah pelabelan simpul anti ajaib busur, pelabelan total anti ajaib simpul, pelabelan total anti ajaib busur, dan masih banyak lagi.

One branch of graph theory that is emerging today is graph labeling. Graph labeling was first introduced by Sedlacek on 1963. Labeling is one-to-one from the set of elements graf to set (usually a positive integer) called label (Read and Miller, 2008). Some types of labeling known today among other magical labeling, labeling anti magical, labeling amount, labeling number of exclusive, graceful labeling, labeling Skolem graceful, labeling harmony and harmonious labeling odd. Labeling anti magic was also composed of various types, some of which are anti-magic labeling knot bow, anti-magic total labeling knot, anti-magic total labeling arc, and still much more."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T45143
UI - Tesis Membership  Universitas Indonesia Library
cover
Milla Rachmawati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setiawan
"

Misalkan G=(V(G),E(G)) adalah graf dengan himpunan simpul V(G) dan himpunan busur E(G). Misalkan f∶E→{1,2,… ,|E(G)|} suatu pemetaan bijektif. Untuk setiap simpul u ∈V(G), bobot dari simpul u adalah w(u)=∑_(e∈E(u))▒〖f(e)〗, dimana E(u) adalah himpunan busur yang bersisian dengan u. Jika untuk setiap u, v∈V(G) berlaku w(u)≠w(v) maka f disebut pelabelan antiajaib dari G. Selanjutnya, f disebut pelabelan antiajaib lokal jika untuk u,v∈V(G) dengan u dan v  bertetangga, maka w(u)≠w(v). Pelabelan antiajaib lokal memunculkan sifat pewarnaan simpul dimana simpul u diberi warna berdasar bobot w(u). Bilangan kromatik antiajaib lokal graf G, dinotasikan X_la (G) adalah banyaknya warna minimum pada pelabelan simpul yang ditimbulkan oleh pelabelan antiajaib lokal. Operasi perkalian korona dari dua graf G dan H, dinotasikan dengan G∘H, adalah graf yang dibentuk dari graf G dan graf H dengan menyalin graf H sebanyak |V(G)|, sebut H_1,H_2,…,H_|V(G)| selanjutnya ditambahkan busur sehingga semua simpul di H_i bertetangga dengan simpul x_i di G, untuk 1 ≤ i ≤ |G|. Tesis ini membahas bilangan kromatik antiajaib lokal graf perkalian korona dua lintasan, yaitu〖 X〗_la (P_n∘P_k ), dimana  k=2,3,5. Hasil penelitian menunjukkan bahwa bilangan kromatik pelabelan simpul antiajaib lokal, 〖 X〗_la (P_n∘P_k ), untuk  k=2,3,5 adalah  X_la (P_n∘P_2 )=6 untuk n≥4 ,〖 X〗_la (P_n∘P_3 )=6,untuk n≥4 and X_la (P_n∘P_5 )=7, untuk n ≥5.

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×


Let G=(V,E) be a graph with vertex set V and edge set E. Let f:E→{1,2,…,|E|} be a bijection map. For each vertex u ∈V(G), the weigh of vertex u is w(u)=∑_(e∈E(u))▒〖f(e)〗, where E(u) is the set of edges incident to u. If for each u,v∈V(G), w(u)≠w(v) then f is called antimagic labelling of G. Furthermore, f is called antimagic labelling of G if for any two adjacent vertices u,v∈V(G), then w(u)≠w(v). The local antimagic labeling induces a proper vertex coloring of G where the vertex v is assigned the color (vertex sum) w(v).  The local antimagic chromatic number, denoted X_la (G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. Let G and H be two graphs. The corona product graph G∘H is obtained by taking one copy of  G along with |V(G)|  copies of H, and via putting extra edges making the ith vertex of G adjacent to every vertex of the ith copy of H, where 1≤i ≤|V(G)|. This thesis discusses the local antimagic chromatic number of corona product graph two paths,〖 X〗_la (P_n∘P_k ), where k=2,3,5. The result showed that the chromatic number of local antimagic vertex coloring P_n∘P_k,for k=2,3,5 are X_la (P_n∘P_2 )=6 for n≥4,〖 X〗_la (P_n∘P_3 )=6,for n≥4,X_la (P_n∘P_5 )=7, for n≥5.

 

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

 

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger×

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fabian Andhika Pratama
"Misalkan Gadalah graf sederhana dengan himpunan simpul yang tak kosong V(G) dan himpunan busur E(G) serta V(G) menyatakan banyaknya simpul pada graf G dan E(G) menyatakan banyaknya busur pada graf G. Pelabelan total super simpul antiajaib lokal (PTSSAL) pada graf G adalah fungsi bijektif f yang memetakan gabungan dari V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} yang memenuhi kondisi f(V(G)) = {1, 2, …, |V(G)|}, sedemikian sehingga w(u) tidak sama dengan w(v) untuk setiap pasangan simpul bertetangga u dan v dengan w(u) sama dengan f(u) dijumlahkan dengan hasil penjumlahan dari label-label busur yang hadir terhadap simpul u. Nilai minimum dari banyaknya bobot yang berbeda pada pelabelan total super simpul antiajaib lokal yang dibutuhkan untuk suatu graf G disebut sebagai bilangan kromatik total super simpul antiajaib lokal. Graf pohon pisang B_(n,k) adalah graf yang diperoleh dengan menghubungkan satu daun dari setiap n-salinan graf bintang S_k kepada suatu simpul akar. Pada tahun 2018, telah ditemukan batas atas untuk bilangan kromatik total simpul antiajaib lokal pada graf pohon pisang B_(n,k). Pada penelitian ini dikonstruksi pelabelan total super simpul antiajaib lokal untuk graf pohon pisang B_(n,k) untuk menentukan nilai bilangan kromatik total super simpul antiajaib lokal pada graf pohon pisang B_(n,k) dengan n dan k adalah bilangan asli dan n serta k bernilai lebih besar atau sama dengan 3.

Let G be a simple graph with a nonempty vertex set |V(G)| and edge set |E(G)| where |V(G)| denotes the number of vertices of G and |E(G)| denotes the number of edges of G. Super vertex local antimagic total labeling on graph G is a bijective function f that maps union of V(G) and E(G) to the set{1, 2, …, |V(G)|+|E(G)|} that satisfies the condition f(V(G)) = {1, 2, …, |V(G)|}, such that w(u) is not equal to w(v) for every adjacent vertices u and vwith w(u) is equal to the f(u) added to the sum of labels from edges that are incident to vertex u. The minimum number of different weights needed on super vertex local antimagic total labeling on graph is referred as super vertex local antimagic total chromatic number. A banana tree B_(n,k) is a graph that is obtained by connecting single leaf from every n-copy of star graph S_k to a root vertex. In 2018, the upper bound for vertec local antimagic total chromatic number has been found for banana tree graph B_(n,k). The research finds the construction of the super vertex local antimagic total labeling on banana tree graph B_(n,k) to determine the number of super vertex local antimagic total chromatic number from banana tree graph B_(n,k) where n and k are natural numbers and n also k are greater or equal to 3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>