https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pelabelan Total Super Busur Antiajaib Lokal pada Graf Bunga Matahari = Super Local Edge Antimagic Total Labeling of Sunflower Graph

Adinda Diyah Ayu Permata Sari; Kiki Ariyanti Sugeng; Silaban, Denny Riama, examiner; Peter John, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan χsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu χsleat(Sfn) = n + 1.

Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by χsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which χsleat(Sfn) = n + 1.

 File Digital: 1

Shelf
 S-Adinda Diyah Ayu Permata Sari.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xvii, 42 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-68960911 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20528550
Cover