Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 49978 dokumen yang sesuai dengan query
cover
Bayu Ardianto
"Dalam rangka meningkatkan kemampuan Intrusion Detection System (IDS) dalam mendeteksi serangan, beberapa penelitian melakukan penerapan teknik deep learning. Penelitian ini menggunakan salah satu teknik deep learning yaitu Convolutional Neural Network (CNN) dengan algoritma Convolution 1 Dimension (Conv1D) dan dataset Communications Security Establishment and Canadian Institute of Cybersecurity Intrusion Detection System (CSE-CIC-IDS) 2017 dan CSE-CIC-IDS 2018 untuk deteksi serangan DoS-Hulk, DoS-SlowHTTPTest, DoS-GoldenEye, dan DoS-Slowloris. Selain itu, dilakukan penggabungan kedua dataset tersebut untuk meningkatkan kinerja deteksi. Kontribusi dari penelitian ini adalah penerapan teknik resampling sebelum data mengalami proses pembelajaran. Selain itu, dilakukan penambahan fungsi dropout untuk mencegah terjadinya overfitting. Berdasarkan hasil penelitian diperoleh bahwa model CNN yang dibangun dengan dataset CSE-CIC-IDS 2018 memiliki kinerja yang lebih tinggi dalam deteksi serangan DoS dibanding model CNN yang dibangun dengan dataset CSE-CIC-IDS 2017 yaitu akurasi 99,57%, precision 99,58%, recall 99,43% dan f1-score 99,50%.

To improve the ability of Intrusion Detection System (IDS) to detect attacks, several studies have implemented deep learning techniques. Our study uses one of the deep learning techniques, namely Convolutional Neural Network (CNN) with Conv1D algorithm and dataset Communications Security Establishment and Canadian Institute of Cybersecurity Intrusion Detection System (CSE-CIC-IDS) 2017 and CSE-CIC-IDS 2018 for detection of DoS attacks-Hulk, DoS attacks-SlowHTTPTest, DoS attacks-GoldenEye, and DoS attacks-Slowloris. In addition, the two datasets were combined to improve detection performance. The contribution of our study is the application of resampling techniques before the data undergoes the learning process. In addition, a dropout function was added to prevent overfitting. Based on the results of the study, it was found that the CNN model built with the CSE-CIC-IDS dataset 2018 had a higher performance in detecting DoS attacks than the CNN model built with the CSE-CIC-IDS 2017 dataset, such as accuracy 99,57% precision 99,58% recall 99,43% dan f1-score 99,50%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadhilah Rheza Putranto
"Pada setiap jaringan, selalu ada ancaman yang mengkompromasikan keamanan dan user.Salah satu ancaman ini adalah serangan Denial of Service (DoS attack). Serangan Denial of Service adalah serangan yang mematikan layanan dan jaringan, tidak dapat diakses oleh user. Serangan DoS dilakukan dengan flooding target dengan traffic, atau mengirimkannya informasi yang menyebabkan system crash. Salah satu metode yang dapat digunakan untuk mencegah serangan ini adalah dengan menggunakan Intrusion Prevention System (IPS). Sistem Pencegahan Intrusi yang berfungsi untuk menjaga keamanan jaringan dengan pencegahan dan mencegah ancaman atau serangan yang terindentifikasi. Intrusion Prevention System bekerja dengan jaringan user, mencari kemungkinan eksploit dan mendapatkan informasinya. Intrusion Prevention System memberikan informasi eksploit ini ke administrator sistem dan mengambil tindakan pencegahan, seperti menutup access point Pada penelitian ini dilakukan percobaan penyerangan seperti UDP flood attack, TCP flood attack, dan ICMP flood attack. Setelah itu dilakukan analisa performa menggunakan 2 open source IPS yaitu: Snort dan Suricata.dengan menganalisa efektivitas mereka. Dari serangan tersebut akan dilakukan analisis performansi IPS dan perhitungan security metric dengan metode VEA-bility. Hasil dari VEA-bility berupa nilai 0 hingga 10 yang diperoleh dari perhitungan nilai vulnerability dimension, exploitability dimension dan attackbility dimension akan menentukan tingkat keamanan sistem. Hasil dari analisis VEA-bility metric menunjukkan bahwa Suricata lebih “viable” dibangdingkan Snort.

On every network, there are always threats that compromise security and users. One of these threats is a Denial of Service attack (DoS attack). Denial of Service attacks are attacks that kill services and networks, inaccessible to the user. DoS attacks are performed by flooding the target with traffic, or sending it information that causes the system to crash. One method that can be used to prevent this attack is to use the Intrusion Prevention System (IPS). Intrusion Prevention System which functions to maintain network security by preventing and preventing identified threats or attacks. The Intrusion Prevention System works with a network of users, looking for possible exploits and getting their information. Intrusion Prevention System provides information on this exploit to system administrators and takes preventive action, such as closing the access point. In this study, attack trials such as UDP flood attack, TCP flood attack, dan ICMP flood attack were carried out. After that, performance analysis was carried out using 2 open source IPS, namely: Snort and Suricata by analyzing their effectiveness . From this attack, an IPS performance analysis will be carried out and the calculation of security metrics using the VEA-ability method. The results of VEA- ability in the form of values from 0 to 10 obtained from the calculation of the value of the vulnerability dimension, the exploitability dimension and the attackbility dimension will determine the level of system security. The results of the VEA-bility metric analysis show that Suricata is more viable than Snort."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elkania Samanta Nagani
"Penyakit mata perlu pendeteksian dan diagnosis yang tepat mengingat peran organ mata yang penting dalam kehidupan. Salah satu cara mendeteksi penyakit mata yang menyebabkan kebutaan adalah melalui ophthalmoscopy, dengan hasil pemeriksaan berupa citra fundus. Penelitian ini menggunakan metode Convolution Neural Network (CNN) dengan arsitektur CO-ResNet. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi data multi-kelas penyakit mata. Preprocessing crop center dan resize digunakan dalam penelitian ini agar ukuran data citra dapat dijadikan input model. Fungsi optimasi untuk meminimalkan loss function ketika melatih model yang digunakan dalam penelitian ini adalah fungsi Adam dengan setting hyperparameter learning rate, epoch, 𝛽1 , dan 𝛽2 . Fungsi loss yang digunakan untuk masalah pengklasifikasian multikelas dalam penelitian ini adalah categorical cross entropy. Hasil penelitian menunjukan nilai yang diperoleh dengan training loss terkecil sebesar 0,4066 dan validation loss terkecil sebesar 0,4950. Sementara itu, nilai training accuracy terbaik sebesar 87% dan validation accuracy terbaik sebesar 79%. Setelah melalui proses training, dilakukan proses testing untuk mengevaluasi kinerja model. Hasil testing terbaik yang didapat dengan nilai testing accuracy sebesar 75,25%, precision sebesar 75,6%, recall sebesar 75,4%, dan F1-score sebesar 75,4%. Secara keseluruhan, metode CO- ResNet bekerja dengan cukup baik dalam mengklasifikasi dan mendeteksi penyakit mata.

Eye diseases need proper detection and diagnosis considering the important role of eye organs in life. One way to detect eye diseases that cause blindness is through ophthalmoscopy, with the results of the examination being an image of the fundus. This research uses the Convolution Neural Network (CNN) method with CO-ResNet architecture. The data used in this study were taken from an online database containing data on multi-class eye diseases. Preprocessing crop center and resize are used in this study so that the size of the image data can be used as model input. The optimization function to minimize the loss function when training the model used in this study is the Adam function with the hyperparameters setting are learning rate, epoch, 𝛽1, and 𝛽2. The loss function used for the multiclass classification problem in this study is categorical cross entropy. The results showed that the value obtained with the smallest training loss was 0.4066 and the smallest validation loss was 0.4950. Meanwhile, the best training accuracy value is 87% and the best validation accuracy is 79%. After going through the training process, a testing process is carried out to evaluate the performance of the model. The best testing results were obtained with testing accuracy values of 75.25%, precision of 75.6%, recall of 75.4%, and F1-score of 75.4%. Overall, the CO-ResNet method works quite well in classifying and detecting eye diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Taqiy Nur Furqon
"Serangan Denial of Service adalah salah satu ancaman serius bagi keamanan jaringan yang dapat menyebabkan gangguan dan tidak tersedianya suatu layanan. Security Information and Event Management (SIEM) Wazuh merupakan sebuah solusi open-source yang dirancang untuk memberikan visibilitas, analisis, dan respons terhadap ancaman keamanan dalam jaringan. Penelitian ini bertujuan untuk menganalisis implementasi SIEM Wazuh dalam mendeteksi serangan DoS dengan mengintegrasikan SIEM Wazuh dengan Intrusion Detection System (IDS) Suricata sebagai pengumpul log paket jaringan. Penelitian dilakukan dalam lingkungan mesin virtual dengan tiga skenario serangan, SYN flood, UDP flood, serta ICMP flood yang dilakukan dengan Hping. Dari hasil penelitian didapatkan bahwa Wazuh dapat mendeteksi semua serangan berdasarkan rule kustom yang telah dibuat dengan waktu rerata deteksi tiap serangan secara berurut 13,99 detik, 45,083 detik, dan 1,2 detik. Penelitian ini menunjukkan bahwa Wazuh mendeteksi serangan berdasarkan rule dan fitur seperti pemantauan log real-time, analisis rule-based serta integrasi dengan sistem keamanan lainnya berkontribusi terhadap efektivitas Wazuh dalam mendeteksi serangan DoS.

Denial of Service attacks pose a serious threat to network security, causing disruption and service unavailability. Security Information and Event Management (SIEM) Wazuh is an open-source solution designed to provide visibility, analysis, and response to security threats within networks. This research aims to analyze the implementation of SIEM Wazuh in detecting DoS attacks by integrating it with the Intrusion Detection System (IDS) Suricata as the network packet logging collector. The study was conducted in a virtual machine environment with three attack scenarios: SYN flood, UDP flood, and ICMP flood simulated using Hping3. The research findings indicate that Wazuh can detect all attacks based on custom rules created, with average detection times for each attack scenario sequentially being 13.99 seconds, 45.083 seconds, and 1.2 seconds. The study demonstrates that Wazuh detects attacks through rules and features such as real-time log monitoring, rule-based analysis, and integration with other security systems contributing to its effectiveness in detecting DoS attacks."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desan Rafsanjani
"Pisang (Musa sp.) merupakan salah satu buah dengan keberagaman yang banyak di Indonesia. Terdapat sekitar 6 sampai 9 subspesies atau varietas pisang Musa acuminata. Pemodelan multi-varieties untuk pengukuran kadar gula total pada suatu buah bertujuan untuk memudahkan proses perhitungan untuk satu kelompok varietas sehingga hanya didapatkan satu model saja yang disebut universal model. Dalam penelitian ini, penulis mencoba membuat universal model untuk pengukuran kadar gula total pada 3 varietas pisang Musa acuminata menggunakan citra hiperspektral berbasis Visible-Near Infrared (VNIR). Universal model utama yang akan digunakan berbasis Convolution Neural Network (CNN). Convolution Neural Networks (CNN) merupakan kumpulan suatu layer (neural) 3 dimensi yang membentuk suatu jaringan (network) yang berfungsi untuk pengolahan data berdimensi tiga melalui proses konvolusi. 3 komponen utama dalam perancangan perangkat keras untuk akuisisi data citra hyperspectral, di antaranya kamera hiperspektral, lampu halogen, dan slider. Pada penelitian ini digunakan 3 jenis buah pisang berbeda, yaitu pisang ambon kuning, pisang cavendish, dan pisang mas. Model universal atau model untuk memprediksi kadar gula total pada pisang cavendish, pisang mas, dan pisang ambon pada penelitian ini didapatkan parameter regresi sebesar 1,1285 untuk RMSEP; 0,2338 untuk RMSEC; 0,8747 untuk RP2; dan 0,9946 untuk RC2. Implementasi deep learning CNN sebagai regresi untuk sistem pengukuran kadar gula total pada varietas pisang Musa acuminata dapat digunakan pada penelitian ini karena didapatkan nilai parameter regresi yang hampir sama dengan parameter hasil regresi pada algoritma PLSR.

Banana (Musa sp.) is one of the most diverse fruits in Indonesia. There are about 6 to 9 subspecies or varieties of Musa acuminata banana. Multi-varieties modeling for measuring the total sugar content in a fruit aims to facilitate the calculation process for one varieties group so that only one model is obtained which is called the universal model. In this study, the authors tried to obtain a universal model for measuring total sugar content in 3 Banana Varieties Musa acuminata using hyperspectral imaging based on Visible-Near Infrared (VNIR). The main universal model to be used is based on Convolution Neural Network (CNN). Convolution Neural Networks (CNN) is a set of 3-dimensional (neural) layers that form a network that used for three-dimensional data processing through a convolutional. 3 main hardware components used for hyperspectral image data acquisition, including a hyperspectral camera, halogen lights, and sliders. In this study, three different types of banana were used, there is yellow ambon banana, cavendish banana, and mas banana. Universal model or a model to predict total sugar content in cavendish banana, cas banana, and ambon banana in this study obtained a regression parameter of 1.1285 for RMSEP; 0.2338 for RMSEC; 0.8747 for RP2; and 0,9946 for RC2. The implementation of deep learning CNN as a regression for the total sugar content measurement system in Musa acuminata banana variety can be used in this study due to the regression parameter values are almost the same as the regression parameters in the PLSR algorithm"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Teguh Kurniawan
"Software Defined Networking (SDN) adalah perkembangan infastruktur jaringan yang mana bidang kontrol dan bidang data dipisah sehingga kecerdasan jaringan secara logis terpusat pada bidang kontrol berbasis perangkat lunak, sedangkan perangkat jaringan (OpenFlow Switches) menjadi perangkat penerusan paket atau bidang data yang dapat diprogram melalui interface (protokol OpenFlow). Namun pemisahan bidang kontrol dan bidang data menimbulkan berbagai tantangan salah satunya adalah tantangan keamanan. Tantangan keamanan yang besar di SDN adalah serangan Distributed Denial of Service (DDoS). Terdapat beberapa titik serangan DDoS pada SDN. Jika DDoS menyerang bidang kontrol mengakibatkan kegagalan seluruh jaringan, sementara jika menyerang bidang data atau saluran komunikasi antara bidang kontrol dan bidang data mengakibatkan paket drop dan tidak tersedianya layanan SDN. Berbagai solusi keamanan untuk mengurangi dan mencegah serangan DDoS pada SDN sudah ditawarkan, salah satunya adalah dengan metode entropy. Metode entropy adalah konsep dari teori informasi, yang merupakan ukuran ketidakpastian atau keacakan yang terkait dengan variabel acak atau dalam hal ini paket yang datang melalui jaringan. Metode entropy adalah solusi yang efektif dan ringan dalam hal sumber daya yang digunakannya karena serangan DDoS dapat menghabiskan sumber daya pengontrol, bandwidth link dan sumber daya switch OpenFlow yang memiliki kapasitas yang terbatas maka solusi yang di usulkan pun harus ringan dan tidak menghabiskan sumber daya atau overhead pada sumber daya jaringan. Penelitian sistem deteksi dengan metode entropy saat ini masih memiliki beberapa kelemahan, metode entropy masih menghasilkan nilai akurasi yang masih rendah dan false positive yang masih cukup tinggi hal ini dikarenakan fitur yang di hitung entropy-nya hanya menggunakan satu fitur dan dua fitur. Hal ini berpeluang untuk menyebabkan kesalahan deteksi, selain itu, belum ada nya pemilihan fitur mana yang paling berpengaruh terhadap serangan DDoS sehingga ketika memperhitungkan semua fitur metode deteksi akan memberatkan kerja kontroller. Maka perlu adanya pemilihan fitur dan perhitungan yang mempertimbangkan lebih dari satu fitur. Penelitian ini mengembangkan metode entropy dengan memperhitungkan tiga fitur serangan DdoS yang menjadi titik maksimal sesuai dengan karakteritik SDN dan DDoS. Ketiga fitur tersebut adalah source_IP, destination_IP dan source_MAC didapatkan akurasi deteksi DDoS dengan menggunakan pengembangan entropy sebesar 99.43%. Dengan False positive 0.08 % dan kecepatan deteksi sebesar 10.5s.

Software Defined Networking (SDN) is a development of network infrastructure in which the control planes and data planes are placed separately so that network control intelligence is logically translated into software-based fields. In contrast, the network devices (OpenFlow Switches) become packet-forwarding devices or data fields that can be programmed through interfaces (OpenFlow protoco l). However, the conversion of control fields and field data cause various challenges for instance a security challenge. The big security challenge in SDN is Distributed Denial of Service (DDoS) attacks. There are multiple DDoS attack points on SDN for example If a DDoS attacks the control plane, it may cause failure of the entire network, while if it attacks the data plane or the communication channel between the control plane and the plane data it will result a dropped packets and SDN services will no longer available again. There are a bunch of security solutions have been offered to reduce and prevent DDoS attacks on SDN. One of them entropy method. This method derives from information theory, which is a the baseline of the uncertainty or randomness associated with random variables or in this case packets that may go through a network. The entropy method is an effective and friendly resource-usage solution. it's because when DDoS attacks the control plane, it required a lot of controller resources, link bandwidth and OpenFlow switch resources which have limited capacity. Hence, the proposed solution sould be resource friendly or overhead on network resources. Research on detection systems using the entropy method currently still has several weaknesses for example the entropy method still produces low accuracy values and a high-false positives since the calculated entropy features only use one and two features. This procedure will cause errors detection. In addition there is no selection of which features have the most influence on DDoS attacks, so when considering all the features the detection method, it will burden the controller's work. So, it is necessary to select features and calculations that consider more than one feature. This research develops the entropy method which engaged the three features of DDoS attacks that may become the maximum point according to the characteristics of SDN and DDoS. The three features inlcude source_IP, destination_IPand source-MAC, result the accuracy DDoS detection using an entropy expansion of 99.43% with a False positive of 0.08% and a detection speed of 10.5s"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sherly
"Dengan berkembangnya teknologi menyebabkan banyaknya kerentanan yang dapat terjadi pada jaringan wireless yang sering kali dimanfaatkan oleh berbagai pihak contohnya serangan DoS. Oleh karena itu sangat dibutuhkan sistem yang user friendly untuk memudahkan user dalam mendeteksi dan mencegah serangan tersebut sebelum attacker membahayakan jaringan. System tersebut dinamakan Intrusion Detection System (IDS). Pada pengujian ini menggunakan sistem operasi windows 10 dengan beberapa tools yaitu Snort sebagai IDS software, BASE sebagai report modul, Kiwi Syslog untuk menampilkan alert, dan hub sebagai network device. Ada beberapa jenis serangan yang dilakukan yaitu IP Scan dan Port Scan digunakan untuk mencari IP dan Port yang terbuka agar dapat diserang, dan Flooding sebagai penyerangnya. Dalam pengujian ini, terdapat beberapa skenario yang dilakukan yaitu pengujian Functionality Test pada client 1 – 3 untuk membandingkan nilai serangan, dan juga untuk mengetahui response time dari serangan yang dilakukan tersebut. Pada skenario pertama, dilakukan flooding pada 1 client (komputer target) dengan IP address 192.168.0.8 selama 60 menit lalu mendapatkan hasil 307.758 alert dan response time selama 0.000105741 s. Pada skenario kedua, dilakukan flooding terhadap 2 client sekaligus dengan IP address 192.168.0.1 dan 192.168.0.5 lalu hasil yang didapatkan sebanyak 378.920 alert dan response time selama 0.000127213 s. Dan pada skenario ketiga, dilakukan flooding terhadap 3 client sekaligus dengan IP address 192.168.0.8, 192.168.0.9, dan 192.168.0.4 lalu mendapatkan hasil sebanyak 430.212 alert dan response time selama 0.000142852 s. Pada setiap skenario dilakukan pengujian sebanyak 10 kali untuk melihat hasil yang didapatkan. Hasil yang didapat setelah melakukan pengujian tersebut ternyata mengalami kenaikan alert yang ditunjukan dengan persentase sebagai berikut yaitu dari skenario pertama ke skenario kedua sebesar 23,12%, skenario kedua ke skenario ketiga sebesar 13,53%, skenario pertama ke skenario ketiga sebesar 39,78%. Begitupula dengan response time yaitu dari skenario pertama ke skenario kedua sebesar 20,30%, skenario kedua ke skenario ketiga sebesar 12,29%, skenario pertama ke skenario ketiga sebesar 35,09%
With the development of technology, it causes many vulnerabilities that can occur in wireless networks which are often exploited by various parties, for example DoS attacks. Therefore, a user friendly system is needed to make it easier for users to detect and prevent these attacks before the attacker harms the network. The system is called the Intrusion Detection System (IDS). In this test using the Windows 10 operating system with several tools, namely Snort as IDS software, BASE as a report module, Kiwi Syslog to display alerts, and a hub as a network device. There are several types of attacks carried out, namely IP Scan and Port Scan used to find IP and open ports so that they can be attacked, and Flooding as the attacker. In this test, there are several scenarios that are carried out, namely Functionality Tests on clients 1-3 to compare the attack values, and also to determine the response time of the attacks carried out. In the first scenario, one client (target computer) was flooded with the IP address 192.168.0.8 for 60 minutes and then got 307.758 alerts and 0.000105741 s response time. In the second scenario, 2 clients are flooded at once with IP addresses 192.168.0.1 and 192.168.0.5 then the results obtained are 378,920 alerts and response time is 0.000127213 s. And in the third scenario, 3 clients are flooded at once with IP addresses 192.168.0.8, 192.168.0.9, and 192.168.0.4 and then get 430,212 alerts and a response time of 0.000142852 s. In each scenario, 10 times were tested to see the results obtained. The results obtained after carrying out the test turned out to have increased alerts as indicated by the following percentages, namely from the first scenario to the second scenario of 23.12%, the second scenario to the third scenario of 13.53%, the first scenario to the third scenario of 39.78 %. Likewise, the response time from the first scenario to the second scenario is 20.30%, the second scenario to the third scenario is 12.29%, the first scenario to the third scenario is 35.09%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Adi Nugroho
"Pengolahan citra telah mengalami banyak perkembangan dan semakin umum diaplikasikan. Salah satu pengaplikasiannya rekognisi wajah tiga dimensi, yang juga melibatkan estimasi pose wajah. Salah satu metode rekognisi citra, yaitu jaringan saraf konvolusi, berpotensi menjadi dasar dari sistem estimasi pose wajah. Operasi konvolusi diharapkan mampu meminimalisir pengaruh distorsi dan disorientasi objek, serta mampu mengefisiensikan parameter yang dibutuhkan. Namun, permasalahan noise atau derau belum secara eksplisit terselesaikan oleh jaringan saraf tiruan konvolusi.
Penelitian ini bertujuan memasukkan fitur sistem fuzzy yang efektif mengelola data samar ke dalam jaringan saraf tiruan konvolusi yang diaplikasikan untuk estimasi pose wajah. Perancangan dimulai dari menjabarkan fungsi masing-masing lapisan jaringan saraf tiruan, menjabarkan operasi-operasi aritmatika pada bilangan fuzzy, dan mencoba menggantikan neuron crisp pada jaringan saraf tiruan konvolusi umum menjadi neuron fuzzy, dan mengaplikasikannya untuk mengestimasi pose wajah. Sistem yang sudah dibangun kemudian diujicoba pada dataset yang dimiliki Departemen Teknik Elektro UI dan dibandingkan dengan CNN-crisp yang memiliki arsitektur serupa dengan parameter pembelajaran yang sama.
Hasil didapat menunjukkan sistem konvolusi fuzzy mencapai nilai kesalahan estimasi pose lebih rendah dari konvolusi crisp pada data berderau tanpa merubah hasil estimasi pada data tidak berderau.

Image processing has undergone many developments and is increasingly commonly applied. From limited two-dimensional recogniton, facial recognition has now being developed to be able to recognise three-dimensional features. This ability involves process of face pose estimation. One method of image recognition, the convolution neural network, has the potential to become the basis of the face pose estimation system. Convolution operation is expected to minimize the effect of distortion and disorientation of the object, and able to efficiently reduce the required parameters. However, the image noise problem has not been explicitly resolved by convolution neural networks.
This study aims to include features of a fuzzy system that effectively manages fuzzy data into convolutional neural networks applied to head pose estimation. The design begins with describing the function of each layer of artificial neural networks, describing arithmetic operations on fuzzy numbers, and attempting to replace crisp neurons in convolution layer of convolutional neural into fuzzy neurons, and applying them to estimate head poses. The estimator system is then tested on a dataset owned by the Department of Electrical Engineering UI and compared with CNN-crisp that has a similar architecture with the same learning parameters.
The results show that the fuzzy convolution system reaches less error of pose estimation value compared to the crisp convolution system, without changing the estimation value of image without noises.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49040
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>