https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Universal regression model berbasis Convolution Neural Network (CNN) untuk sistem pengukuran kadar gula total pada 3 varietas pisang Musa acuminata menggunakan Citra Hyperspectral = Universal regression model based on Convolution Neural Network (CNN) for measurement system of total sugar content in 3 banana varieties Musa acuminata Using Hyperspectral Image

Desan Rafsanjani; Adhi Harmoko Saputro, supervisor; Windri Handayani, supervisor; Santoso S, examiner; Prawito, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021)

 Abstrak

Pisang (Musa sp.) merupakan salah satu buah dengan keberagaman yang banyak di Indonesia. Terdapat sekitar 6 sampai 9 subspesies atau varietas pisang Musa acuminata. Pemodelan multi-varieties untuk pengukuran kadar gula total pada suatu buah bertujuan untuk memudahkan proses perhitungan untuk satu kelompok varietas sehingga hanya didapatkan satu model saja yang disebut universal model. Dalam penelitian ini, penulis mencoba membuat universal model untuk pengukuran kadar gula total pada 3 varietas pisang Musa acuminata menggunakan citra hiperspektral berbasis Visible-Near Infrared (VNIR). Universal model utama yang akan digunakan berbasis Convolution Neural Network (CNN). Convolution Neural Networks (CNN) merupakan kumpulan suatu layer (neural) 3 dimensi yang membentuk suatu jaringan (network) yang berfungsi untuk pengolahan data berdimensi tiga melalui proses konvolusi. 3 komponen utama dalam perancangan perangkat keras untuk akuisisi data citra hyperspectral, di antaranya kamera hiperspektral, lampu halogen, dan slider. Pada penelitian ini digunakan 3 jenis buah pisang berbeda, yaitu pisang ambon kuning, pisang cavendish, dan pisang mas. Model universal atau model untuk memprediksi kadar gula total pada pisang cavendish, pisang mas, dan pisang ambon pada penelitian ini didapatkan parameter regresi sebesar 1,1285 untuk RMSEP; 0,2338 untuk RMSEC; 0,8747 untuk RP2; dan 0,9946 untuk RC2. Implementasi deep learning CNN sebagai regresi untuk sistem pengukuran kadar gula total pada varietas pisang Musa acuminata dapat digunakan pada penelitian ini karena didapatkan nilai parameter regresi yang hampir sama dengan parameter hasil regresi pada algoritma PLSR.

Banana (Musa sp.) is one of the most diverse fruits in Indonesia. There are about 6 to 9 subspecies or varieties of Musa acuminata banana. Multi-varieties modeling for measuring the total sugar content in a fruit aims to facilitate the calculation process for one varieties group so that only one model is obtained which is called the universal model. In this study, the authors tried to obtain a universal model for measuring total sugar content in 3 Banana Varieties Musa acuminata using hyperspectral imaging based on Visible-Near Infrared (VNIR). The main universal model to be used is based on Convolution Neural Network (CNN). Convolution Neural Networks (CNN) is a set of 3-dimensional (neural) layers that form a network that used for three-dimensional data processing through a convolutional. 3 main hardware components used for hyperspectral image data acquisition, including a hyperspectral camera, halogen lights, and sliders. In this study, three different types of banana were used, there is yellow ambon banana, cavendish banana, and mas banana. Universal model or a model to predict total sugar content in cavendish banana, cas banana, and ambon banana in this study obtained a regression parameter of 1.1285 for RMSEP; 0.2338 for RMSEC; 0.8747 for RP2; and 0,9946 for RC2. The implementation of deep learning CNN as a regression for the total sugar content measurement system in Musa acuminata banana variety can be used in this study due to the regression parameter values are almost the same as the regression parameters in the PLSR algorithm

 File Digital: 1

Shelf
 S-Desan Rafsanjani.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdacarries)
Deskripsi Fisik : xv, 87 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-65625367 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20512857
Cover