Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75761 dokumen yang sesuai dengan query
cover
Anom Galuh Mustika Sari
"

Kanker payudara adalah suatu jenis tumor ganas yang berkembang pada sel-sel payudara. Pada penelitian ini digunakan model Adaptive Neuro Fuzzy Inference System (ANFIS) dengan Selecting Feature. Neuro Fuzzy (NF) menghibridisasi keunggulan dari Artificial Neural Network (ANN) dan Fuzzy Logic (FL) untuk mengatasi masalah input informasi yang tidak pasti dan tidak tepat. Penelitian model ANFIS dengan selecting feature dilakukan dengan 4 tahap. Pada tahap pertama dilakukan preprocessing data, di mana terlebih dahulu dilakukan cleaning dataset untuk menghilangkan 16 missing value, kemudian data dinormalisasi dalam interval [0,1], selanjutnya dipilih fitur mana yang mewakili dataset menggunakan algoritma relief, correlation plot, dan ilmu di bidang kesehatannya. Tahap kedua yaitu pembagian dataset menjadi 4 label. Hal ini bertujuan untuk melihat pembagian data antara data training dan data testing mana yang proporsional untuk diuji. Tahap ketiga merupakan pengujian model ANFIS dengan eppoch= 50, 100, 150 pada 4 label dataset. Tahap ini menghasilkan nilai RMSE untuk melihat seberapa kecil tingkat kesalahan dari model ANFIS. Pada tahap akhir, dilakukan uji performance data untuk melihat akurasi pada data testing. Berdasarkan hasil uji dalam 4 label dataset, diperoleh rata-rata untuk akurasi 96,35%. Dari hasil penelitian disimpulkan bahwa model Adaptive Neuro Fuzzy Inference System dengan Selecting Feature cukup baik untuk memprediksi kanker payudara.


Breast cancer is a type of tumor that develops in breast cells. In this study, the Adaptive Neuro Fuzzy Inference System (ANFIS) model was used with the Selecting Feature. Neuro Fuzzy (NF) hybridizes the advantages of Artificial Neural Network (ANN) and Fuzzy Logic (FL) to solve the problem of uncertain and imprecise information input. The ANFIS research model with feature selection was carried out in 4 stages. In the first stage, data preprocessing is carried out, where first cleaning the dataset to eliminate 16 missing values, then the data is normalized in intervals [0,1], then selected which features represent the dataset using relief algorithms, correlation plots, and science in the field. his health. The second stage is dividing the dataset into 4 labels. This aims to see the distribution of data between training data and testing data which is proportional to be tested. The third stage is the ANFIS testing model with eppoch = 50, 100, 150 on 4 dataset labels. This stage generates the RMSE value to see the slightest error rate of the ANFIS model. In the final stage, a data performance test is carried out to see the accuracy of the data testing. Based on the test results in 4 dataset labels, an average of 96.35% accuracy is obtained. From the research, it was concluded that the Adaptive Neuro Fuzzy Inference System model with the Selecting Feature was good enough to predict breast cancer.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Idayati
"Klasifikasi data citra Ultrasonograf (USG) tumor payudara telah dilakukan dengan menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS). Untuk klasifikasi diberikan pasangan-pasangan input fungsi keanggotaan (MFs) antara 0 - 0,1 dengan output pasien tumor/kanker sangat parah; input MFs 0,11 - 0,2 dengan output pasien tumor/kanker parah; input MFs 0,21 - 0,4 dengan output pasien tumor/kanker tidak parah; dan input 0,41 - 1 dengan output pasien sehat. Klasifikasi dilakukan terhadap data citra ultrasonografi baik pada pasien sehat maupun pada pasien yang memiliki kelainan, dan memberikan persentase kebenaran data training sebesar 87 %. Rule base dibuat dengan menggunakan sistem pakar (expert system) dengan 8 aturan dan training data FMS dilakukan dengan menggunakan metode backpropagation."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14689
UI - Tesis Membership  Universitas Indonesia Library
cover
Budi Triantono
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39053
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nafiys Ismail
"Proses sistem kendali adalah proses penting yang terjadi di dunia perindustrian, salah satunya di ranah industri hulu migas. Salah satu instrumen utama pada proses upstream migas adalah separator yang memiliki fungsi untuk memisahkan kandungan fluida minyak mentah yang mengalir melalui pipa menjadi beberapa wujud fase. Pada kenyataanya hampir semua proses pengendalian separator pada fasilitas produksi PT. Pertamina EP masih menggunakan model pengendalian PID konvensional yang harus terus dimonitoring oleh sumber daya manusia selama 24 jam per hari. Oleh karenanya, pada penelitian ini dirancang sebuah metode pengendalian berbasis intelligent system, yaitu simulasi pengendalian Neuro Fuzzy. Metode pengendalian Neuro-Fuzzy ini didesain menggunakan algoritma ANFIS dengan input berupa setpoint, error, dan selisih error dari proses variabel fluida separator, yaitu level (h) fluida. Penelitian dilakukan menggunakan aplikasi Simulink/MATLAB dengan memasukkan fungsi transfer dari model matematis separator lalu melakukan perbandingan dengan melihat grafik respon dan parameter antara model pengendali PID dan ANFIS. Hasil dari penelitian menunjukan bahwa performa pengendali model ANFIS secara rata-rata memiliki overshoot yang jauh lebih baik dari model PID karena selalu mendekati nol dalam tiap kondisi set point serta model ANFIS memiliki nilai error yang lebih baik pada saat set point bernilai 5 dengan perbedaan error 0,712 dari error model pengendali PID.

The control system process is an important process that occurs in the industrial world, one of which is in the upstream oil and gas industry. One of the main instruments in the upstream oil and gas process is a separator which has afunction to separate the crude oil fluid content flowing through the pipe into several phases. In fact, almost all separator control processes at PT. Pertamina EP still uses the conventional PID control model which must be continuously monitored by human resources 24 hours per day. Therefore, in this study, a control method based on intelligent systems is based on Neuro Fuzzy control of the level (h) of the fluid. The research was conducted using the Simulink/MATLAB application by entering the transfer function of the separator mathematical model and then making comparisons by looking at the response and parameter charts between the PID and ANFIS controller. The results of the study show that the ANFIS model controller performance on average has a much better overshoot than the PID model because it is always close to zero in each set point condition and the ANFIS model has a better error value when the set point is 5 with an error difference of 0.712. of the PID controller model error."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Titan Kemal Latif
"Pada masa sekarang ini perkembangan teknologi cenderung memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Salah satu dari banyak metode untuk mengembangkan teknologi yang cerdas adalah dengan menggunakan Adaptive Neuro Fuzyy Inference System. Penelitian ini dilakukan dengan menerapkan ANFIS tipe Sugeno pada data-data penelitian umum, seperti data tanaman iris dan data ionosphere, melihat efek perubahan parameter-parameter terhadap recognisinya, lalu melakukan ANFIS terhadap data citra wajah.

The technology nowadays tends to have abbility to think and to size up decision, just like us humans. One of the kind of method to enhance smart technology is by using Adaptive Neuro Fuzyy Inference System. This research is done by using ANFIS Sugeno type on general research data, such as iris plant data and ionosphere data, observing the effect of the changing parameter over the recognition, then using ANFIS on face image data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S47312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agustina Rachmawardani
"Banjir di Jakarta merupakan masalah yang kompleks yang dipengaruhi oleh kombinasi faktor geografis, sosial, ekonomi, dan lingkungan. Studi ini berfokus pada prediksi banjir dengan membandingkan data stasiun darat Automatic Rain Gauge (ARG) dan data satelit Climate Hazards Group InfraRed Precipitation (CHIRPS) menggunakan Adaptive Neurofuzzy Inference System (ANFIS) yang terintegrasi dengan Principal Component Analysis (PCA). Dataset mencakup pengukuran curah hujan dari ARG dan CHIRPS, serta data ketinggian air dari tahun 2014 hingga 2020. ARG menyediakan data curah hujan lokal yang akurat, sementara CHIRPS menawarkan cakupan curah hujan regional yang luas. Teknik praproses seperti imputasi rata-rata, normalisasi data, dan metode interquartile range (IQR) digunakan untuk meningkatkan kualitas data. Model ANFIS-PCA, yang mengintegrasikan logika fuzzy dan pelatihan jaringan saraf tiruan, diterapkan dengan pembagian data 80:20 untuk pelatihan dan validasi. Ketika dilatih dengan data stasiun darat ARG dan pengukuran ketinggian air, model ANFIS-PCA menunjukkan akurasi yang superior, dengan root mean square error (RMSE) sebesar 0,13, mean absolute error (MAE) sebesar 0,12, dan R² sebesar 0,82. Sebaliknya, model ANFIS tanpa PCA menghasilkan kesalahan yang lebih tinggi, dengan RMSE 6,3, MAE 6,2, dan R² 0,74. Pelatihan dengan data satelit CHIRPS menghasilkan kesalahan yang jauh lebih tinggi (RMSE 30,14, MAE 24,05, R² 0,42). Sedangkan hasil ANFIS – PCA menghasilkan akurasi yang lebih bagus (RMSE 4,8, MAE 2,0 dan R² 0,55) . Hasil penelitian menunjukkan bahwa ANFIS-PCA memiliki kinerja yang lebih baik dibandingkan model ANFIS tanpa PCA, terutama ketika dilatih dengan data dari stasiun darat. Integrasi PCA berhasil mengurangi dimensi data, meningkatkan efisiensi komputasi dan akurasi model. Selain itu hasil ini juga menegaskan keunggulan pengukuran curah hujan data ground station untuk prediksi banjir, mempunyai angka presisi yang lebih tinggi dan kerentanan yang lebih rendah terhadap kesalahan dibandingkan data satelit. Sementara itu data satelit CHIRPS menawarkan cakupan spasial yang lebih luas.

Flooding in Jakarta is a complex issue influenced by a combination of geographical, social, economic, and environmental factors. This study focuses on flood prediction by comparing ground station data from Automatic Rain Gauges (ARG) and satellite data from the Climate Hazards Group InfraRed Precipitation (CHIRPS) using the Adaptive Neuro-Fuzzy Inference System (ANFIS) integrated with Principal Component Analysis (PCA). The dataset includes rainfall measurements from ARG and CHIRPS, as well as water level data from 2014 to 2020. ARG provides accurate local rainfall data, while CHIRPS offers broad regional precipitation coverage. Preprocessing techniques such as mean imputation, data normalization, and the interquartile range (IQR) method were employed to enhance data quality.
The ANFIS-PCA model, which integrates fuzzy logic and neural network training, was implemented using an 80:20 data split for training and validation. When trained with ARG ground station data and water level measurements, the ANFIS-PCA model demonstrated superior accuracy, achieving a root mean square error (RMSE) of 0.13, mean absolute error (MAE) of 0.12, and R² of 0.82. In contrast, the ANFIS model without PCA yielded higher errors, with RMSE of 6.3, MAE of 6.2, and R² of 0.74. Training with CHIRPS satellite data resulted in significantly higher errors (RMSE 30.14, MAE 24.05, R² 0.42). Meanwhile, the ANFIS-PCA model trained on combined datasets showed improved performance, achieving RMSE of 4.8, MAE of 2.0, and R² of 0.55.
The results indicate that the ANFIS-PCA model outperforms the ANFIS model without PCA, particularly when trained with ground station data. The integration of PCA successfully reduced data dimensionality, improving computational efficiency and model accuracy. Furthermore, the findings reaffirm the superiority of ground-based measurements for flood prediction due to their higher precision and lower susceptibility to errors compared to satellite-derived data, while CHIRPS satellite data offers wider spatial coverage.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
cover
Muhamad Abdul Aziz
"Sistem transmisi Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) telah menjadi pilihan utama dalam transmisi daya jarak jauh karena keunggulannya dalam hal fleksibilitas dan stabilitas. Namun, tantangan utama dalam pengoperasian sistem VSC-HVDC adalah menjaga stabilitas dan performa optimal, terutama dalam kondisi transien dan saat terjadi gangguan. Penelitian ini bertujuan untuk mengoptimalkan kinerja sistem transmisi VSC-HVDC dengan menggunakan kontrol roportional-Integral Adaptive Neuro-Fuzzy Inference System (PI-ANFIS) dan membandingkan performanya dengan kontrol PI konvensional. Penelitian ini menggunakan pemodelan sistem transmisi VSC-HVDC dengan kontrol PI sebagai dasar. Data relasi input-output dari model tersebut kemudian digunakan untuk melatih model ANFIS. Setelah itu, model VSC-HVDC dengan kontrol PI-ANFIS dikembangkan dan dianalisis. Kinerja sistem dengan kontrol PI-ANFIS dievaluasi dalam kondisi transien dan saat terjadi gangguan, baik gangguan permanen maupun sementara.  Hasil penelitian menunjukkan bahwa kontrol PI-ANFIS mampu meningkatkan performa sistem transmisi VSC-HVDC secara signifikan dibandingkan dengan kontrol PI konvensional. Dalam kondisi transien, PI-ANFIS mampu mengurangi overshoot dan mempercepat settling time pada kendali daya aktif, daya reaktif, dan tegangan DC. Saat terjadi gangguan permanen, PI-ANFIS menunjukkan kemampuan yang lebih baik dalam menjaga kestabilan dan mempercepat waktu pemulihan sistem. Pada kondisi gangguan sementara, PI-ANFIS mampu mencapai kestabilan lebih cepat dan menjaga stabilitas dalam batas yang diinginkan. Keunggulan kontrol PI-ANFIS didasari oleh kemampuan adaptasi dan pembelajaran dari algoritma ANFIS, yang memberikan fleksibilitas tambahan dalam menghadapi kondisi dinamis dan gangguan tak terduga. Implementasi kontrol PI-ANFIS pada sistem transmisi VSC-HVDC tidak hanya meningkatkan kinerja sistem dalam jangka pendek, tetapi juga dapat memberikan manfaat ekonomi jangka panjang melalui peningkatan keandalan dan pengurangan biaya pemeliharaan sistem. Penelitian ini memberikan kontribusi signifikan dalam pengembangan teknologi kontrol cerdas untuk sistem transmisi daya yang lebih handal, efisien, dan adaptif. Hasil penelitian ini dapat menjadi landasan untuk penelitian lebih lanjut dan adopsi kontrol PI-ANFIS dalam aplikasi praktis pada sistem transmisi VSC-HVDC di masa depan.

Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) transmission systems have become the preferred choice for long-distance power transmission due to their advantages in flexibility and stability. However, the main challenge in operating VSC-HVDC systems is maintaining optimal stability and performance, especially under transient conditions and during disturbances. This research aims to analyze the performance of VSC-HVDC transmission systems using Proportional-Integral Adaptive Neuro-Fuzzy Inference System (PI-ANFIS) control and compare its performance with conventional PI control. This research uses modeling of the VSC-HVDC transmission system with PI control as a basis. The input-output relationship data from the model is then used to train the ANFIS model. Afterward, the VSC-HVDC model with PI-ANFIS control is developed and optimized. The performance of the system with PI-ANFIS control is evaluated under transient conditions and during disturbances, both permanent and temporary. The results show that PI-ANFIS control can significantly improve the performance of the VSC-HVDC transmission system compared to conventional PI control. Under transient conditions, PI-ANFIS is capable of reducing overshoot and accelerating settling time in active power, reactive power, and DC voltage control. During permanent disturbances, PI-ANFIS demonstrates better ability in maintaining stability and accelerating system recovery time. Under temporary disturbance conditions, PI-ANFIS achieves stability faster and maintains stability within desired limits. The superiority of PI-ANFIS control is based on the adaptability and learning capabilities of the ANFIS algorithm, which provides additional flexibility in dealing with dynamic conditions and unexpected disturbances. The implementation of PI-ANFIS control in VSC-HVDC transmission systems not only improves short-term system performance but can also provide long-term economic benefits through increased reliability and reduced system maintenance costs. This research makes a significant contribution to the development of intelligent control technology for more reliable, efficient, and adaptive power transmission systems. The results of this research can serve as a foundation for further research and the adoption of PI-ANFIS control in practical applications of VSC-HVDC transmission systems in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajratul Hasanah
"

Demam Berdarah Dengue (DBD) merupakan penyakit yang banyak ditemukan di sebagian besar wilayah tropis dan subtropis. DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue yang termasuk ke dalam family flaviviridae dan genus flavivirus yang ditularkan ke manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopicus dengan masa inkubasi intrinsik 3 sampai 14 hari, dan inkubasi ekstrinsik 8 sampai 10 hari. Dalam 3 tahun terakhir, jumlah penderita DBD di DKI Jakarta menduduki jumlah tertinggi yang mencapai 813 jiwa pada tahun 2019. Pada tugas akhir ini, dibahas pembuatan model Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk memprediksi jumlah insiden DBD di DKI Jakarta menggunakan data jumlah insiden DBD pada setiap wilayah di DKI Jakarta tahun 2009 sampai 2017. Hasil simulasi dari model Adaptive Neuro-Fuzzy Inference System dibandingkan dengan hasil model Artificial Neural Network (ANN) dan Ensemble ANN-ANFIS yang dievaluasi berdasarkan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, Adaptive Neuro-Fuzzy Inference System memiliki performa lebih baik dibandingkan Artificial Neural Network dan Ensemble ANN-ANFIS hampir seluruh daerah di DKI Jakarta.


Dengue Hemorrhagic Fever (DHF) is a disease that is found in most tropical and subtropical regions. DHF is a disease caused by dengue virus which belongs to the flaviviridae family and genus flavivirus which is transmitted to humans through the bite of Aedes aegypti and Aedes albopicus mosquitoes with an intrinsic incubation period of 3 to14 days, and extrinsic incubation period of 8 to 10 days. In the last 3 years, the number of DHF sufferers in DKI occupied the highest number, which reached 813 people in 2019. In this final project, we will discuss making an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict the number of DHF reporting in DKI Jakarta using data on the number of DHF reporting in each region in DKI Jakarta from 2009 to 2017. Simulation result from the Adaptive Neuro-Fuzzy Inference System model are compared with the results of the Artificial Neural Network (ANN) model and the Ensemble ANN-ANFIS model, evaluated based on Root Mean Squared Error and Mean Absolute Error. In this final project, the Adaptive Neuro-Fuzzy Inference System has better performance than the Artificial Neural Network and Ensemble ANN-ANFIS in all regions in DKI Jakarta.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>