UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Prediksi Jumlah Insiden Demam Berdarah Dengue di DKI Jakarta Menggunakan Adaptive Neuro-Fuzzy Inference System = Prediction of Dengue Incidence in DKI Jakarta Using Adaptive Neuro-Fuzzy Inference System

Hajratul Hasanah; Gatot Fatwanto Hertono, supervisor; Devvi Sarwinda, supervisor; Suryadi, examiner; Arie Wibowo, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Demam Berdarah Dengue (DBD) merupakan penyakit yang banyak ditemukan di sebagian besar wilayah tropis dan subtropis. DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue yang termasuk ke dalam family flaviviridae dan genus flavivirus yang ditularkan ke manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopicus dengan masa inkubasi intrinsik 3 sampai 14 hari, dan inkubasi ekstrinsik 8 sampai 10 hari. Dalam 3 tahun terakhir, jumlah penderita DBD di DKI Jakarta menduduki jumlah tertinggi yang mencapai 813 jiwa pada tahun 2019. Pada tugas akhir ini, dibahas pembuatan model Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk memprediksi jumlah insiden DBD di DKI Jakarta menggunakan data jumlah insiden DBD pada setiap wilayah di DKI Jakarta tahun 2009 sampai 2017. Hasil simulasi dari model Adaptive Neuro-Fuzzy Inference System dibandingkan dengan hasil model Artificial Neural Network (ANN) dan Ensemble ANN-ANFIS yang dievaluasi berdasarkan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, Adaptive Neuro-Fuzzy Inference System memiliki performa lebih baik dibandingkan Artificial Neural Network dan Ensemble ANN-ANFIS hampir seluruh daerah di DKI Jakarta.


Dengue Hemorrhagic Fever (DHF) is a disease that is found in most tropical and subtropical regions. DHF is a disease caused by dengue virus which belongs to the flaviviridae family and genus flavivirus which is transmitted to humans through the bite of Aedes aegypti and Aedes albopicus mosquitoes with an intrinsic incubation period of 3 to14 days, and extrinsic incubation period of 8 to 10 days. In the last 3 years, the number of DHF sufferers in DKI occupied the highest number, which reached 813 people in 2019. In this final project, we will discuss making an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict the number of DHF reporting in DKI Jakarta using data on the number of DHF reporting in each region in DKI Jakarta from 2009 to 2017. Simulation result from the Adaptive Neuro-Fuzzy Inference System model are compared with the results of the Artificial Neural Network (ANN) model and the Ensemble ANN-ANFIS model, evaluated based on Root Mean Squared Error and Mean Absolute Error. In this final project, the Adaptive Neuro-Fuzzy Inference System has better performance than the Artificial Neural Network and Ensemble ANN-ANFIS in all regions in DKI Jakarta.

 File Digital: 1

Shelf
 S-Hajratul Hasanah.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xix, 98 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-22-06189430 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20509582
Cover