Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128100 dokumen yang sesuai dengan query
cover
Ridhani Faradina
"Salah satu perkembangan dari teknologi terbaru adalah pengenalan wajah. Pengenalan wajah pada dasarnya dilakukan berdasarkan asumsi bahwa setiap individu memiliki identitas unik. Tetapi pada kenyataannya, akan ada individu yang memiliki wajah mirip dengan individu lainnya. Penelitian ini dilakukan untuk mendeteksi individu-individu yang mirip tersebut. Metode machine learning yang digunakan adalah Support Vector Machine dan Fuzzy Kernel C-Means dengan dua jenis kernel. Metode pemilihan fitur Chi-Square juga akan digunakan untuk mereduksi dimensi data sehingga waktu yang dibutuhkan lebih cepat. Data yang digunakan adalah data foto wajah yang diambil dari Look-Alike Face Database. Hasil yang diperoleh memperlihatkan bahwa kedua metode machine learning tersebut mampu untuk melakukan pengenalan wajah pada identifikasi kemiripan, dengan akurasi tertinggi yang diperoleh SVM sebesar 94 dan FKCM sebesar 74.

One of the latest technology developments is face recognition. Face recognition is basically done on the assumption that each individual has a unique identity. But in reality, there will be individuals who have faces similar to other individuals. This research was conducted to identify look alike faces. The machine learning methods used are Support Vector Machine and Fuzzy Kernel C Means with two types of kernel. The Chi Square feature selection method was also used to reduce the dimension of the data in order to achive lower running time. The data used are face photos taken from Look Alike Face Database. The results show that both machine learning methods were able to perform face recognition on identification of look alike faces, with the highest accuracy obtained by SVM is 94 and FKCM is 74 ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frederica Yaurita
"Masalah kebangkrutan perusahaan asuransi telah menjadi perhatian khusus bagi pimpinan, karyawan, maupun nasabah perusahaan asuransi. Kekhawatiran ini muncul seiringan dengan dampak yang dapat ditimbulkan dari kebangkrutan perusahaan, yaitu perusahaan asuransi tidak mampu memenuhi kewajibannya kepada nasabah, sehingga uang premi yang telah dibayarkan oleh nasabah dalam jangka waktu tertentu menjadi sia-sia. Maka dari itu sebagai upaya untuk mencegah terjadinya kebangkrutan perusahaan asuransi, kami mencari suatu metode yang kiranya mampu mendeteksi kebangkrutan perusahaan asuransi dengan baik. Pada penelitian ini kami menggunakan beberapa algoritma machine learning, dan ternyata nilai akurasi dari simulasi program yang dilakukan mencapai 93.00 . Ini menunjukkan bahwa algoritma machine learning yang kami gunakan pada penelitian ini dapat dijadikan alat yang efektif untuk memprediksi kebangkrutan perusahaan asuransi.

Insolvency of insurance companies has been a concern of parties such as the management, the workers, and of course the consumers of insurance companies. This concern has arisen by the impact when an insurance companies got insolvent, that is, the company is unable to fulfil their obligations to customer. So, the premium that have paid by the customer becomes useless. As the attempt to prevent the insolvency of insurance company, we were looking for methods that able to make the insolvency prediction. In this study, we used several machine learning algorithms. The results are very encouraging and show that the algorithms can be a useful tool in this sector. We found that the algorithms achieved 93.00 accuracy rate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.

Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Sigalingging, Geraldo Martua
"Elektroensefalografi (EEG), adalah metode perekaman aktivitas kelistrikan otak pada kulit kepala. Aktivitas kelistrikan ini direkam dan diubah menjadi sinyal amplitudo tegangan. Hasil sinyal yang sudah diproses ini akan terklasifikasi pengguna melakukan perintah atau tidak. Sistem ini adalah purwarupa untuk pengembangan Sistem Pengendalian Tangan Artifisial Dengan EEG yang berfungsi menggerakkan tangan artifisial dengan bantuan sinyal gelombang otak. Sistem ini bekerja dengan mendeteksi keberadaan sinyal ERP P300 dalam sinyal EEG.
Dalam penelitian ini, metode untuk menganalisis data EEG adalah filtrasi, ekstraksi P300 dan algoritma klasifikasi Support Vector Machines (SVM). Dari metode yang digunakan akan menunjukkan nilai rekognisi yang akan dibandingkan antar filtrasi, ekstraksi dan klasifikasi sehingga menghasilkan Filtrasi dengan Chebyshev Type I Orde 5 dengan nilai rekognisi 61.07%, ekstraksi fitur dengan Independent Component Analysis (ICA) dengan nilai rekognisi 58.64 %, dan klasifikasi data dengan Back Propagation Neural Network dengan nilai 59.97 % adalah algoritma yang paling efektif.

Electroencephalography (EEG), is a method of recording the brains electrical activity on the scalp. This activity is recorded and converted to a signal amplitude voltage. The result of this signal will be classified as a user or not. This system is a prototype for the development of an Artificial Hand Control System with EEG which functions to move the artificial hand with the help of brain wave signals. This system works by detecting the presence of an ERP P300 signal in the EEG signal.
In this study, methods for analyzing EEG data were filtration, extraction P300, and Support Vector Machines (SVM) classification algorithms. From the method used will show the value of recognition that will be compared between filtration, extraction and classification so as to produce Filtration with Chebyshev Type I Order 5 with recognition value of 61.07%, feature extraction with Independent Component Analysis (ICA) with recognition value of 58.64%, and data classification with Back Propagation Neural Network with a value of 59.97% is the most effective algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuni Rosita Dewi
"Prediksi klaim merupakan proses penting dalam industri asuransi karena perusahaan asuransi dapat menyiapkan jenis polis asuransi yang tepat untuk masing-masing pemegang polis potensial. Frekuensi prediksi klaim dewasa ini kian meningkat. Sehingga data prediksi klaim yang memiliki volume besar ini disebut big data, baik dari segi jumlah fitur maupun jumlah data pemegang polis. Salah satu alternatif solusi perusahaan asuransi untuk melihat pemegang polis melakukan klaim atau tidak, bisa menggunakan machine learning yang teruji dapat digunakan untuk klasifikasi dan prediksi. Salah satu metode machine learning untuk mengurangi jumlah fitur adalah dengan proses seleksi fitur, yaitu mencari urutan fitur berdasarkan tingkat pentingnya fitur. Metode seleksi fitur yang digunakan adalah Gram-Schmidt Orthogonalization. Metode ini sebelumnya digunakan untuk data tidak terstruktur namun pada penelitian ini diuji pada data terstruktur bervolume besar. Untuk menguji urutan fitur yang diperoleh dari proses seleksi fitur, digunakan Support Vector Machine karena termasuk metode machine learning yang popular untuk klasifikasi. Berdasarkan hasil simulasi, urutan yang diperoleh dari proses Gram-Schmidt Orthogonalization relatif konsisten. Selanjutnya, dapat diketahui fitur-fitur yang paling berpengaruh untuk menentukan pemegang polis klaim atau tidak. Simulasi juga menunjukkan bahwa hanya dengan menggunakan sekitar 26 % fitur, akurasi yang dihasilkan sebanding dengan menggunakan semua fitur.

Claim prediction is an important process in the insurance industry because insurance companies can prepare the right type of insurance policy for each potential policyholder. The frequency of today`s claim predictions is increasing. So that claim prediction data has a large volume called big data, both in terms of the number of features and the number of policyholders. One alternative solution for insurance companies to see whether policyholders claim or not, we can use machine learning that is proven to be used for classification and prediction. One of the machine learning methods to reduce the number of features is the feature selection process, which is to search for sequences of features based on their importance feature. The feature selection method used is Gram-Schmidt Orthogonalization. This method was previously used for unstructured data, but in this research is tested on large volume structured data. Support Vector Machine is used to test the ordered features obtained from the feature selection process because it is a popular machine learning method for classification. Based on a result, the ordered features obtained from the Gram-Schmidt Orthogonalization process is relatively stable. After that, it can also be seen the most important features to determine policyholders claim or not. The simulation also shows that using only about 26 % features, the resulting accuracy is comparable to using all features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54313
UI - Tesis Membership  Universitas Indonesia Library
cover
Gausul Furida Firdaus
"Didalam skripsi ini dijelaskan tentang konsep Least Square Support Vector Machines (LS-SVM) untuk pengembangan sistem pengenalan tanda nomor kendaraan bermotor. Sistem akan mengenali plat nomor kendaraan untuk keperluan proses identifikasi secara otomatis. Pengenalan karakter merupakan modul inti dalam sistem yang mengenali tanda nomor kendaraan dari video. Yang menjadi fokus penelitian ini ialah ketepatan dalam mengenali setiap karakter, kecepatan proses, tingkat ketelitian hasil pengenalan akibat kondisi blur, posisi plat nomor yang miring, kecepatan perekaman video, suasana pengambilan video, resolusi video, dan jumlah data latih. Metode Least Square Support Vector Machine (LS-SVM) digunakan untuk meningkatkan akurasi dan kecepatan komputasi dengan kernel linier serta one against one untuk metode multiclass. Metode deteksi garis tepi dan morphology digunakan pada proses lokalisasi plat nomor. Untuk mengenali karakter secara akurat proses training dipisah antara karakter angka dan huruf. Hasil penelitian menunjukan tingkat ketelitian pengenalan tanda nomor kendaraan mencapai maksimal 98.66% untuk resolusi 1280x720p dan jumlah data latih sebanyak 15. Akurasi minimal yang diujikan pada resolusi 320x240 dan jumlah data latih sebanyak 3 diperoleh sebesar 25.50%.

In this paper, we review the use of least square support vector machines (LS-SVM) concept in development system of license plate recognition. License plate of vehicle will recognize by system for identification process automatically. Charackter recognition is a core of system which is essentially multi-classification problem. The major focus of research is identification each character accurately and rapidly in case of blurs, tilt, noise, video resolution, video capturing atmosphere and amount of training set. LS-SVM with linier kernel and one against one for multiclass problem use to further improve recognition accuracy and speed of LPR system. Edge detection and morphology use in license plate localization process of system LPR. In other to recognize a number plate more accurately we separate trained model with number and English character. Our method got a maximum recognition rate 98.66% in resolution 1280x720p with 15 training set. Minimum recognitoin rate that have tested is 25.50% for resolution 320x240 with 3 training set."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54470
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Ihsan Farhani
"Indonesia menempati posisi kedua sebagai negara penghasil karet alami di dunia. Karet alami memiliki nama lain yaitu lateks. Belakangan ini produksi lateks di Indonesia menurun. Salah satu faktor penyebab menurunnya produksi lateks Indonesia adalah penyakit gugur daun. Jamur Pestalotiopsis sp. adalah salah satu jamur yang dapat menyebabkan penyakit gugur daun. Penyakit gugur daun yang disebabkan oleh jamur ini pertama kali terjadi di Indonesia pada tahun 2016 di Sumatera Utara. Penyakit tersebut menyebabkan tanaman karet menggugurkan daun sebelum waktunya sehingga menyebabkan produksi lateks berkurang. Cadangan makanan pohon karet lebih banyak dialokasikan untuk menumbuhkan kembali daun yang telah gugur dibanding untuk memproduksi lateks. Luas lahan pohon karet di Indonesia yang terinfeksi penyakit gugur daun Pestalotiopsis sp. sudah mencapai 30.328,84 hektar pada tahun 2021 menyebabkan penurunan produksi lateks hingga 30%. Pendeteksian penyakit gugur daun dapat dilakukan secara morfologi yaitu dengan pegamatan pada daun. Gejala penyakit gugur daun yang disebabkan oleh Pestalotiopsis sp. adalah munculnya bintik cokelat pada tulang daun yang lama kelamaan berkembang menjadi bintik cokelat gelap. Bintik tersebut kemudian membesar, menyebabkan daerah di sekitar daun mengalami nekrosis kemudian gugur. Kekurangan dari pendeteksian secara morfologi adalah memerlukan waktu dan tenaga yang cukup besar, serta keahlian khusus di bidang tanaman karet. Dalam penelitian ini, akan dilakukan pendeteksian penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. dengan bantuan machine learning untuk mengurangi tenaga dan waktu yang diperlukan dalam mendeteksi penyakit gugur daun. Model machine learning akan menerima input data citra daun tanaman karet. Model yang digunakan dalam pendeteksian adalah k-means clustering untuk mensegmentasi data citra daun karet, convolutional autoencoder untuk melakukan fitur ekstraksi pada data citra hasil segmentasi dan suppport vector machine sebagai classifier. Dari hasil eksperimen dengan 5 kali percobaan didapat accuracy testing sebesar 62,91%, accuracy training sebesar 78,50%. Accuracy testing dan accuracy training memiliki perbedaan yang cukup signifikan menandakan model mengalami overfitting. Overfitting terjadi ketika dataset yang tersedia hanya sedikit, pada penelitian ini yaitu 257 data citra namun, model yang dilatih kompleks. Sehingga diperlukan penambahan data citra untuk menghindari overfitting dan meningkatkan accuracy dari model.

Indonesia occupy the second position as a natural rubber producing country in the world. Natural rubber has another name, namely latex. Recently, latex production in Indonesia has declined. One of the factors causing the decline in Indonesian latex production is leaf fall disease. The fungus Pestalotiopsis sp. is one of the fungi that can cause leaf fall disease. Leaf fall disease caused by this fungus first occurred in Indonesia in 2016 in North Sumatra. The disease causes rubber plants to drop their leaves prematurely, causing reduced latex production. Rubber tree food reserves are allocated more to regrow fallen leaves than to produce latex. The area of rubber trees in Indonesia infected with the Pestalotiopsis sp. leaf fall disease. has reached 30,328.84 hectares in 2021 causing a decline in latex production by up to 30%. Disease detection can be done morphologically by observing the leaves. Symptoms of leaf fall disease caused by Pestalotiopsis sp. is the appearance of brown spots on the veins of the leaves which over time develop into dark brown spots. These spots then enlarge, causing the area around the leaves to experience necrosis and then fall. The drawback of morphological detection is that it requires a lot of time and effort, as well as special expertise in the field of rubber plantations. In this research, we will detect leaf fall disease caused by the fungus Pestalotiopsis sp. with the help of machine learning to reduce the effort and time needed to detect leaf fall disease. The machine learning model will be using image of rubber plant leaves as input data. The model used in the detection is k-means clustering to segment rubber leaf image data, convolutional autoencoder to perform feature extraction on segmented image data and support vector machine as a classifier. From the experimental results with 5 trials obtained testing accuracy of 62.91%, training accuracy of 78.50%. Accuracy testing and accuracy training have significant differences indicating that the model is overfitting. Overfitting occurs when the available dataset is only a few, namely 257 image data but the model being trained is complex. So it is necessary to add image data to avoid overfitting and increase the accuracy of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>