https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pengenalan wajah untuk identifikasi kemiripan menggunakan support vector machine dan fuzzy kernel C-means = Face recognition to identify look alike faces using support vector machine and fuzzy kernel C-means

Ridhani Faradina; Zuherman Rustam, supervisor; Kiki Ariyanti, examiner; Gatot Fatwanto Hertono, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018)

 Abstrak

Salah satu perkembangan dari teknologi terbaru adalah pengenalan wajah. Pengenalan wajah pada dasarnya dilakukan berdasarkan asumsi bahwa setiap individu memiliki identitas unik. Tetapi pada kenyataannya, akan ada individu yang memiliki wajah mirip dengan individu lainnya. Penelitian ini dilakukan untuk mendeteksi individu-individu yang mirip tersebut. Metode machine learning yang digunakan adalah Support Vector Machine dan Fuzzy Kernel C-Means dengan dua jenis kernel. Metode pemilihan fitur Chi-Square juga akan digunakan untuk mereduksi dimensi data sehingga waktu yang dibutuhkan lebih cepat. Data yang digunakan adalah data foto wajah yang diambil dari Look-Alike Face Database. Hasil yang diperoleh memperlihatkan bahwa kedua metode machine learning tersebut mampu untuk melakukan pengenalan wajah pada identifikasi kemiripan, dengan akurasi tertinggi yang diperoleh SVM sebesar 94 dan FKCM sebesar 74.

One of the latest technology developments is face recognition. Face recognition is basically done on the assumption that each individual has a unique identity. But in reality, there will be individuals who have faces similar to other individuals. This research was conducted to identify look alike faces. The machine learning methods used are Support Vector Machine and Fuzzy Kernel C Means with two types of kernel. The Chi Square feature selection method was also used to reduce the dimension of the data in order to achive lower running time. The data used are face photos taken from Look Alike Face Database. The results show that both machine learning methods were able to perform face recognition on identification of look alike faces, with the highest accuracy obtained by SVM is 94 and FKCM is 74 .

 File Digital: 1

Shelf
 S-Pdf-Ridhani Faradina.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 86 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-21-364384399 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20474341
Cover