Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 29511 dokumen yang sesuai dengan query
cover
Lutfiani Safitri
"Traveling salesman problem (TSP) merupakan permasalahan optimasi dimana seseorang akan melakukan perjalanan kesejumlah kota yangdimulai dari kota asal dengan mengunjungi semua kota tepat satu kali dan kembali ke kota asal dengan total biaya atau jarak perjalanannya yang minimal. Dalam tugas akhir ini, algoritma Genetic Ant Colony System (GACS) akan digunakan untuk menyelesaikan TSP. Kemudian akan dibandingkan hasil penyelesaian TSP yang menggunakan algoritma GACS dengan algoritma ACS.

Traveling Salesman Problem (TSP) is an optimization problem in which a person will travel to a number of cities, starting from origin city to visit every city exactly once and return to origin city with minimum total cost or distance. In this undergraduatethesis, GACS algorithm will be used to solveTSP. Then the results will be compare with ACS algorithm."
Depok: Universitas Indonesia, 2015
S61182
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tara Ramadhani
"Perluasan dari Traveling Salesman Problem (TSP) adalah Multiple Traveling Salesman Problem (MTSP), yaitu menentukan kumpulan rute oleh 𝑚 salesman yang berawal dan kembali ke kota asal (depot). Jika terdapat lebih dari satu depot dan salesman yang berawal dan kembali ke depot yang sama, maka permasalahan tersebut dinamakan Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). Pada makalah ini, MMTSP akan diselesaikan menggunakan algoritma Ant Colony Optimization (ACO). ACO adalah algoritma optimisasi metaheuristic yang terinspirasi oleh perilaku semut dalam mencari jalur terpendek dari sarang menuju sumber makanan.
Dalam penyelesaian MMTSP, akan diamati dengan memerhatikan pemilihan kota yang berbeda sebagai depot dan tiga parameter MMTSP non-random, banyaknya salesman (𝑚), minimum banyaknya kota yang harus dikunjungi salesman (𝐾), dan maksimum banyaknya kota yang dapat dikunjungi salesman (𝐿). Implementasi dilakukan dengan mengambil empat data dari TSPLIB. Hasil implementasi menunjukkan bahwa pemilihan kota yang berbeda sebagai depot dan tiga parameter MMTSP, di mana 𝑚 adalah parameter yang paling esensial, mempengaruhi solusi.

An extension of Traveling Salesman Problem (TSP) is the Multiple Traveling Salesman Problem (MTSP) in which, determining set of routes by 𝑚 salesmen who all start from and return to a single home city (depot). If there is more than one depot and salesmen start from and return to the same depot, then the problem is called Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). In this paper, MMTSP will be solved using the Ant Colony Optimization (ACO) algorithm. ACO is a metaheuristic optimization algorithm which inspired by the behavior of ants in finding the shortest path from the nest to the food source.
In solving the MMTSP, the algorithm is observed with respect to different chosen cities as depots and non-randomly three parameters of MMTSP, the number of salesmen (𝑚), the minimum number of cities a salesman must visit (𝐾), and the maximum number of cities that a salesman can visit (𝐿). The implementation is observed with four dataset from TSPLIB. The results show that both the different chosen cities as depots and the three parameters of MMTSP, in which 𝑚 is the most essential parameter, affect the solution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64313
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karina
"Traveling Salesman Problem (TSP) merupakan permasalahan yang banyak ditemukan di bidang transportasi khusunya masalah perjalanan seorang salesman mengunjungi semua kota tepat satu kali sebelum salesman tersebut kembali ke kota awal atau depot. Perluasan dari TSP adalah Multiple Traveling Salesman Problem (MTSP) dengan jumlah salesman adalah lebih dari satu. Pada skripsi ini, penyelesaian MTSP dibahas dengan menggunakan metode algoritma Sweep dan Elite Ant System, dengan penyelesaian MTSP dilakukan dalam dua tahap. Tahap pertama, digunakan algoritma Sweep untuk membangun rute awal perjalanan salesman dan pada tahap kedua digunakan Elite Ant System untuk memperbaiki rute perjalanan awal yang diperoleh dari tahap pertama. Hasil implementasi dengan menggunakan 6 data dari TSPLIB, berdasarkan total jarak yang ditempuh, menunjukkan bahwa metode yang digunakan menghasilkan total jarak lebih baik dibandingakan dengan total jarak hasil metode MACO dan MGA untuk data yang sama. Selain itu, hasil yang diperoleh menunjukkan adanya peran pemilihan kota sebagai depot dalam menentukan total jarak.

Traveling Salesman Problem (TSP) is the most commonly problem that is found in transportation, especially the problem of visiting city by one salesman exactly once before the salesman back to the first city or depot. The Multiple Traveling Salesman Problem (MTSP) is an extension of TSP. This problem relates to accommodating real world problems where there is a need to account for more than one salesman. In this skripsi, MTSP will be discussed in Sweep algorithm and Elite Ant System methods, where the MTSP is solved in two stages. At the first stage, Sweep algorithm is used to construction route of salesman and the second stage, Elite Ant System is used to improving every route of salesman. The implementation results were tested using 6 benchmark problem taken from TSPLIB, based on the total distance travelled, shows that the methods produce a total distance better than the total distance of MGA and MACO methods. Moreover, the results indicate the existence of obtaining a city as the depot as the key factor in determining total distance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64299
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabiila Kusumahardhini
"Multiple Traveling salesman problem MTSP merupakan perluasan dari TSP. MTSP adalah masalah optimasi dimana akan ditentukan total jarak minimum untuk m salesmen dalam melakukan perjalanan ke sejumlah kota tepat satu kali yang dimulai dari kota awal yang disebut depot kemudian kembali lagi ke depot setelah perjalanan selesai. Dalam tugas akhir ini, K-Means dan Crossover Ant Colony Optimization ACO akan digunakan untuk menyelesaikan MTSP. Implementasi dilakukan pada 3 data dari TSPLIB dengan menggunakan salesman berjumlah 2, 3, 4, dan 8. Analisa hasil dengan menggunakan K-Means dan Crossover ACO akan dibandingkan. Pengaruh terhadap pemilihan kota yang menjadi depot pada total jarak perjalanan yang dihasilkan, juga akan dianalisa.

Multiple Traveling Salesman Problem MTSP is a generalization of the Traveling Salesman Problem TSP . MTSP is an optimization problem to find the minimum total distance of m salesmen tours to visit several cities in which each city is only visited exactly by one salesman, starting from origin city called depot and return to depot after the tour is completed. In this skripsi, K Means and Crossover Ant Colony Optimization ACO are used to solve MTSP. The implementation is observed on three datasets from TSPLIB with 2, 3, 4, and 8 salesmen. Analysis of results using K Means and Crossover ACO will be compared. The effect of selecting a city as depot on the total travel distance of tour will also be analyzed."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69165
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ady Steven
"Multiple Depot Multi Traveling Salesman Problem (MMTSP) merupakan bentuk umum dari masalah Traveling Salesman Problem (TSP), yaitu menentukan rute minimum dari perjalanan m salesman dengan n depot untuk menempuh semua kota dan kembali ke depot awalnya. Pada skripsi ini, dilakukan clustering pada kota-kota yang dilalui, sehingga pada setiap klaster masalah MMTSP dapat disederhanakan menjadi masalah MTSP Multiple Traveling Salesman Problem atau TSP. Algoritma clustering yang digunakan adalah Agglomerative Clustering dan K-Means Clustering. Selanjutnya dilakukan metode Ant Colony Optimization untuk mencari rute terpendek dari setiap klaster. Jumlah dari hasil rute terpendek dari setiap klaster merupakan solusi dari masalah MMTSP. Implementasi dilakukan dengan menggunakan sampel data TSPLIB, dan hasil yang didapat juga akan dibandingkan dengan penelitian yang telah dilakukan sebelumnya. Dari hasil simulasi, hasil algoritma Agglomerative Clustering ACO memberikan hasil yang terbaik dibandingkan algoritma K-Means Clustering ACO dan algoritma ACO saja.

Multiple Depot Multiple Traveling Salesman Problem MMTSP is a generalization of the common Traveling Salesman Problem TSP , whole purpose is to generate a minimum route of m traveling salesmen from n depots to explore all cities and back to their origins. In this skripsi, the cities will be clustered, so for every cluster, MMTSP will be simplified as MTSP Multiple Traveling Salesman Problem or TSP. The clustering algorithms that will be used are Agglomerative Clustering and K Means Clustering. Furthermore, for every cluster, the Ant Colony Optimization will be implemented to determine the shortest path. The distance of shortest path in every cluster will be summed as the solution of MMTSP. Implementation of the algorithm will be simulated by using the TSPLIB, and the solutions will be compared to previous research. The simulation results show that the Agglomerative clustering ACO is the best solution compared to the K Means ACO rsquo s and the only ACO algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siska Afrianita
"ABSTRAK
Vehicle Routing Problem with Time Windows (VRPTW) merupakan permasalahan kombinatorik yang sering terjadi pada sistem pendistribusian barang. VRPTW adalah masalah penentuan rute sejumlah kendaraan untuk mendistribusikan barang ke sejumlah pelanggan dengan biaya minimum. Kendaraan yang digunakan memiliki kapasitas serta setiap kendaraan memulai dan mengakhiri perjalanan di depot. Setiap pelanggan yang dilayani akan memberikan time windows dan setiap pelanggan hanya boleh dilayani satu kali. Untuk memperoleh tujuan VRPTW, ada dua tujuan yang harus dicapai yaitu meminimumkan banyaknya kendaraan yang digunakan dan meminimumkan total waktu tempuh kendaraan. Pada skripsi ini akan digunakan algoritma Multiple Ant Colony System (MACS) yang dikembangkan dari algoritma Ant Colony System (ACS) yang termasuk dalam Ant Colony Optimization (ACO). ACO merupakan suatu metode metaheuristik yang terinspirasi dari perilaku hewan yaitu semut. Pada algoritma MACS ini, terdapat dua koloni semut yang masing-masing akan mengoptimisasi tujuan yang akan dicapai pada VRPTW.

ABSTRACT
Vehicle Routing Problem with Time Windows (VRPTW) is one of combinatorial problems which mostly happen in a logistic system. VRPTW is an optimization problem which aims to minimize cost of using fleets of vehicles. The vehicles start and end the route at depot must serve or distribute goods to several customers. Every customer gives time windows and should be visited only once. The objective of VRPTW can be reached by multiple objectives. First, minimizes number of vehicles used, and then minimizes the total travel time. In this final project, it will be used Multiple Ant Colony System algorithm for solving VRPTW. MACS is based on Ant Colony System (ACS) algorithm which is one of Ant Colony Optimization (ACO). ACO is a metaheuristic method inspired by foraging behavior of real colonies of ant. MACS algorithm consider a hierarchical objective for solving VRPTW and these objectives would be optimized by two colonies of ants."
Universitas Indonesia, 2011
S1897
UI - Skripsi Open  Universitas Indonesia Library
cover
Achnaf Fauzan Umar
"Dalam perkembangannya, dengan munculnya pelabuhan-pelabuhan baru yang dapat mengakomodir kapal – kapal internasional untuk bersandar, pilihan rute pelayaran yang dapat ditempuh oleh suatu kapal kontainer akan semakin beragam. Efisiensi dari rute yang dipilih dapat dilihat dari penggunaan bahan bakar yang digunakan oleh kapal kontainer untuk mencapai tujuannya. Bahkan beberapa penelitian menyatakan bahwa 50-60% dari keseluruhan biaya operasional kapal didasarkan pada biaya bahan bakar kapal. Harga bahan bakar juga berfluktuatif dan tidak menentu pada setiap pelabuhan sehingga membuat sebuah kesulitan baru bagi perusahaan pelayaran dalam menentukan rute pelayaran yang paling efisien bagi mereka. Pemilihan rute kapal yang tepat sangat penting untuk meminimalkan biaya operasional. Pada penelitian ini, algoritma yang digunakan untuk pemilihan rute kapal dengan biaya paling minimum adalah algoritma Ant Colony dan Brute Force. Data yang digunakan pada penelitian ini berupa data jarak mil laut antara pelabuhan, daya mesin utama dan juga mesin bantu, kecepatan kapal, dan harga bahan bakar di tiap pelabuhan. Pengolahan data dilakukan dengan membuat model Asymetric Travelling Salesman Problem (ATSP) yang memiliki fungsi objektif bahan bakar yang se efisien mungkin, yang nantinya akan diterapkan algoritma Ant Colony dan Brute Force model ATSP. Variasi yang dilakukan pada penelitian ini terdapat pada destinasi awal atau akhir dari pemilihan rute. Hasil penelitian menunjukkan bahwa algoritma Brute Force melakukan pemilihan rute lebih optimal dibandingkan dengan algoritma Ant Colony dari segi penggunaan bahan bakar.

On its development, with the emergence of new ports that can accommodate international ships to dock, the choice of shipping routes that can be taken by a container ship will be more diverse. The efficiency of the chosen route can be seen from the use of fuel used by the container ship to reach its destination. Some studies state that 50-60% of the overall ship operating costs are based on fuel costs. Fuel prices also fluctuate and are uncertain at each port, making it difficult for companies to determine the most efficient shipping route for them. Selection of the optimum ship route is very important for operational costs. In this study, the algorithm used for selecting the shipping route with the minimum cost is the Ant Colony and Brute Force algorithms. The data used in this study are the distance of nautical miles between ports, main engine power and auxiliary engines, ship speed, and fuel prices at each port. Data processing is start by making the Asymmetric Traveling Salesman Problem (ATSP) model which has the most efficient fuel objective function, which will later be applied to the Ant Colony and Brute Force ATSP models. Variations made in this study are in the initial or final destination of the route selection. The results showed that the Brute Force algorithm selected the optimal route compared to the Ant Colony algorithm in terms of fuel usage."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Everien Dwi Lestari. author
"Quadratic Assignment Problem (QAP) merupakan masalah optimasi kombinatorial yang pertama kali diperkenalkan oleh Koopmans dan Beckman pada tahun 1957. QAP adalah masalah menempatkan n fasilitas pada n lokasi dengan tujuan meminimalkan total jarak. Pada skripsi ini, QAP diselesaikan dengan algoritma Hybrid Ant System (HAS) yang termasuk dalam Ant Colony Optimization (ACO). ACO merupakan suatu metode metaheuristik yang terinspirasi dari perilaku semut dalam mencari rute terpendek dari sumber makanan sampai kembali ke sarangnya. Pada algoritma HAS ini, terdapat sejumlah agen yang ditugaskan untuk membentuk rute perjalanan. Setiap agen secara acak ditugaskan membuat rute dari simpul awal sampai semua simpul dikunjungi dan menghasilkan solusi untuk QAP.

Quadratic assignment problems (QAPs) is one of combinatorial optimization that was introduced by Koopmans and Beckmann in 1957. QAP is assign n facilities to n locations by minimizing the total distance. In this skripsi, QAP problems can be solved by Hybrid Ant System (HAS) algorithm, these algorithm include in Ant Colony Optimization (ACO). ACO is a metaheuristic methods which encouraged from ants behavior in finding the shortest path among the food resources to their cage. By HAS algorithm, there are some agents assigned to create routes randomly from first points until all points visited, then it will result a solution for QAP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56834
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ubadah
"Traveling Salesman Problem (TSP) adalah masalah mencari jalur terpendek untuk mengunjungi setiap simpul tepat satu kali kecuali simpul awal kunjungan jika diberikan himpunan simpul yang harus dikunjungi. Tiga modifikasi dilakukan pada skripsi ini untuk menyelesaikan masalah TSP dengan menggabungkan metode Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) dan 3-Opt Algorithm. ACO digunakan untuk mencari solusi TSP, PSO digunakan untuk mencari nilai paremeter terbaik 𝛼 dan 𝛽 yang digunakan pada ACO, dan 3-Opt digunakan untuk mengurangi total jarak tempuh solusi yang didapat dari ACO. Pada modifikasi pertama, 3-Opt digunakan untuk mengurangi total jarak tempuh dari solusi terbaik yang didapatkan setiap iterasi. Pada modifikasi kedua, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang didapatkan pada setiap iterasi. Pada modifikasi ketiga, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang berbeda yang didapatkan pada setiap iterasi.
Hasil modifikasi diuji menggunakan 6 benchmark problems yang diambil dari TSPLIB dengan menghitung besarnya galat relatif terhadap best known solution dan running time percobaan. Setiap masalah diselesaikan dengan 10 kali percobaan, dengan masing-masing percobaan menggunakan 10 agen dan 50 iterasi. Hasil implementasi menunjukkan modifikasi pertama tidak memberikan hasil yang memuaskan, modifikasi kedua memberikan hasil yang memuaskan namun dengan running time yang cukup besar, serta modifikasi ketiga memberikan nilai galat yang tidak jauh berbeda dengan modifikasi kedua namun dengan running time yang jauh lebih kecil.

The Traveling Salesman Problem (TSP) is the problem of finding a shortest tour which visits all the vertices exactly once, except the first vertex, given a set of vertices. This thesis discusses three modification to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. ACO is used to find the solution of TSP, PSO is used to find the best value of parameters α and β that are used in ACO, and 3-Opt is used to reduce the total of tour length from the solution obtained by ACO. In the first modification, 3-Opt is used to reduce the total of tour length from the best solution obtained at each iteration. In the second modification, 3-Opt is used to reduce the total of tour length from the entire solutions obtained at each iteration. In the third modification, 3-Opt is used to reduce the total of tour length from different solutions obtained at each iteration.
Results were tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution and the running time. Every problem was solved with 10 trials, where each trial uses 10 agents and 50 iterations. The implementation results showed the first modification did not provide satisfactory results, the second modification gave a satisfactory result, but the running time was quite large, and the third modification gave errors that were close to the second one but with smaller running time."
Depok: Universitas Indonesia, 2015
S62553
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lamtiur
"Aircraft landing problem (ALP) merupakan suatu permasalahan pesawat terbang dalam menemukan jadwal yang optimal untuk pendaratan pesawat terbang. Objektivitas dari ALP adalah meminimumkan total biaya pinalti dari pesawat pada single runway maupun multiple runway. Dalam permasalahan ini terdapat beberapa hal penting yang harus dipertimbangkan yaitu kepentingan pemisahan waktu antara pesawat terbang dan interval waktu (time window) yang harus diperhatikan demi kepentingan keselamatan penumpang. Pertama, akan diberikan pemodelan matematis dari ALP dengan fungsi objektif yang linear. Kedua, akan digunakan pendekatan solusi heuristik yaitu Algoritma Ant Colony Optimization (ACO) dalam mencari solusi ALP yang optimal.

Aircraft landing problem (ALP) describes the aircraft problem of finding an optimal schedule of aircrafts landing. The objective of ALP is to minimize total penalty restrictive cost of aircraft in a single runway or multiple runways. This problem considers few certain constraints, such as the necessary separation time between aircrafts and time window that should be concerned for passenger safety. In the first part, will be presented a mathematical formulation of the problem with linear objective function. The second part is heuristic solution approaches with Ant Colony Optimization Algorithm to solve ALP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S62419
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>