https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Optimasi pemilihan rute kapal kontainer Metode Travelling Salesman Problem Algoritma Ant Colony dan Brute Force = Optimization of container ship route Travelling Salesman Problem Methode Ant Colony and Brute Force Algorithm

Achnaf Fauzan Umar; Gunawan, supervisor; Yanuar, examiner; Sunaryo, examiner; Kurniawan Teguh Waskito, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Dalam perkembangannya, dengan munculnya pelabuhan-pelabuhan baru yang dapat mengakomodir kapal – kapal internasional untuk bersandar, pilihan rute pelayaran yang dapat ditempuh oleh suatu kapal kontainer akan semakin beragam. Efisiensi dari rute yang dipilih dapat dilihat dari penggunaan bahan bakar yang digunakan oleh kapal kontainer untuk mencapai tujuannya. Bahkan beberapa penelitian menyatakan bahwa 50-60% dari keseluruhan biaya operasional kapal didasarkan pada biaya bahan bakar kapal. Harga bahan bakar juga berfluktuatif dan tidak menentu pada setiap pelabuhan sehingga membuat sebuah kesulitan baru bagi perusahaan pelayaran dalam menentukan rute pelayaran yang paling efisien bagi mereka. Pemilihan rute kapal yang tepat sangat penting untuk meminimalkan biaya operasional. Pada penelitian ini, algoritma yang digunakan untuk pemilihan rute kapal dengan biaya paling minimum adalah algoritma Ant Colony dan Brute Force. Data yang digunakan pada penelitian ini berupa data jarak mil laut antara pelabuhan, daya mesin utama dan juga mesin bantu, kecepatan kapal, dan harga bahan bakar di tiap pelabuhan. Pengolahan data dilakukan dengan membuat model Asymetric Travelling Salesman Problem (ATSP) yang memiliki fungsi objektif bahan bakar yang se efisien mungkin, yang nantinya akan diterapkan algoritma Ant Colony dan Brute Force model ATSP. Variasi yang dilakukan pada penelitian ini terdapat pada destinasi awal atau akhir dari pemilihan rute. Hasil penelitian menunjukkan bahwa algoritma Brute Force melakukan pemilihan rute lebih optimal dibandingkan dengan algoritma Ant Colony dari segi penggunaan bahan bakar.

On its development, with the emergence of new ports that can accommodate international ships to dock, the choice of shipping routes that can be taken by a container ship will be more diverse. The efficiency of the chosen route can be seen from the use of fuel used by the container ship to reach its destination. Some studies state that 50-60% of the overall ship operating costs are based on fuel costs. Fuel prices also fluctuate and are uncertain at each port, making it difficult for companies to determine the most efficient shipping route for them. Selection of the optimum ship route is very important for operational costs. In this study, the algorithm used for selecting the shipping route with the minimum cost is the Ant Colony and Brute Force algorithms. The data used in this study are the distance of nautical miles between ports, main engine power and auxiliary engines, ship speed, and fuel prices at each port. Data processing is start by making the Asymmetric Traveling Salesman Problem (ATSP) model which has the most efficient fuel objective function, which will later be applied to the Ant Colony and Brute Force ATSP models. Variations made in this study are in the initial or final destination of the route selection. The results showed that the Brute Force algorithm selected the optimal route compared to the Ant Colony algorithm in terms of fuel usage.

 File Digital: 1

Shelf
 S-Achnaf Fauzan Umar.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 74 pages : illustrations ; 28 cm.
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-61181351 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20519011
Cover