Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153627 dokumen yang sesuai dengan query
cover
Muhammad Ashari
"ABSTRACT
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise."
2014
S57664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosandi Prarizki
"ABSTRAK
Algoritma pembelajaran jaringan saraf tiruan dewasa ini semakin beragam.
Masing-masing algoritma memiliki kelebihan dan kekurangan dan menjadi hal
yang menarik untuk dipelajari. Pada penelitian ini akan dibahas mengenai
algoritma pembelajaran metode Levenberg-Marquardt yang akan digunakan
untuk jaringan saraf tunggal dan Ensemble Neural Network. Hasil percobaan
menunjukan bahwa metode Levenberg-Marquardt memiliki keunggulan dalam
kecepatan dan kestabilan.

ABSTRACT
Neural network learning algorithm is more diverse today. Each algorithm has
advantages and disadvantages, and those are interesting thing to learn. This
research will be discussed on the learning algorithm Levenberg-Marquardt
method to be used for a single neural network and Ensemble Neural Network.
Results of this research shows Levenberg-Marquardt learning algorithm has a
good speed and stability."
Fakultas Teknik Universitas Indonesia, 2012
S42239
UI - Skripsi Open  Universitas Indonesia Library
cover
Afif Widaryanto
"

Perkembangan kecerdasan buatan (artificial intelligence/AI) bergerak semakin cepat dan mengalami kemajuan pesat dalam setiap bidang kehidupan manusia, tak terkecuali dalam dunia kendali industri. Sementara kendali industri mensyaratkan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis serta dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Pengendali berbasis kecerdasan buatan dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis neural network. Dalam penelitian ini disajikan desain dan simulasi sistem pengendali berbasis neural network dengan metode pembelajaran back propagation yaitu pengendali inverse langsung(direct inverse control/DIC), pengendali neuron tunggal(single neuron controller), serta pengendali PID pada plant modul training pressure process rig(PPR 38-417). Untuk pengujiannya, didesain sistem identifikasi berbasis neural network sebagai simulator plant. Hasilnya, semua sistem kendali yang didesain tersebut mampu mengendalikan plant sesuai dengan sinyal referensi yang dinginkan. Namun pengendali single neuron dan PID mampu mempertahankan keluarannya dengan baik saat diberi gangguan pada sinyal kendali maupun plant dibandingkan dengan pengendali inverse langsung(ANN-DIC). Hal ini dikarenakan kendali single neuron dan PID bersifat close loop sehingga mampu mengkoreksi kesalahan secara langsung. Sementara jika dibandingkan dengan kendali PID, kendali single neuron lebih adaptif untuk berbagai kondisi gangguan karena memiliki metode pembelajaran langsung, sementara kendali PID perlu dilakukan tunning untuk mendapatkan unjuk kerja yang handal.


The development of artificial intelligence (AI) is moving faster and experiencing rapid progress in every area of human life, not least in the world of industrial control. While industrial control requires a control system that is able to overcome changes in characteristics automatically and can adapt to the dynamics of system changes caused by changes in working environment conditions. Artificial intelligence-based controllers are considered capable of adapting to changes in the characteristics of the system automatically is a neural network-based controller. In this study, the design and simulation of a neural network-based controller system with back propagation learning methods, namely direct inverse control (DIC) and single neuron controller, as well as PID controllers for the pressure process rig (PPR 38-417) training module. For the test, a neural network-based identification system is designed as a simulator plant. As a result, all the control systems designed are able to control the plant in accordance with the desired reference signal. However, single neuron and PID controllers are able to maintain their output well when given interference with the control signal or plant compared to the direct inverse controller (ANN-DIC). This is because single neuron control and PID are close loop so that they can correct errors directly. Meanwhile, when compared to PID control, single neuron control is more adaptive for a variety of disruption conditions because it has a direct learning method, while PID control needs to be tuned to get reliable performance.

"
2019
T53060
UI - Tesis Membership  Universitas Indonesia Library
cover
Haryo Bimo Cokrokusumo
"Dalam penelitian ini, algoritma in-house berbasis RED-CNN disusun dan dilatih menggunakan citra fantom PMMA silinder berdiameter 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, dan 2,00 x 105). Model diuji pada citra fantom PMMA berbentuk ellips dengan ukuran 21 x 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, dan 5,00 x 105) untuk mengevaluasi kemampuan denoising dari model dengan menggunakan nilai signal to noise ratio (SNR), peak signal to noise ratio-desibel (PSNR-dB), structural similarity (SSIM) index, dan noise power spectrum (NPS) sebagai parameter. Evaluasi terhadap kemungkinan penurunan kualitas citra juga dilakukan dengan menguji model menggunakan citra fantom homogen dan citra fantom kawat yang diperoleh menggunakan lima nilai mAs berbeda (155 mAs, 200 mAs, 250 mAs, 275 mAs, dan 300 mAs). Hasil menunjukkan bahwa model dapat secara konsisten meningkatkan nilai SNR, PSNR-dB, SSIM dan spektrum noise yang terukur. Hasil yang diperoleh juga menunjukkan adanya kemungkinan citra mengalami over-smoothing apabila model diaplikasikan pada citra dengan tingkat noise lebih rendah, ditandai dengan adanya pergeseran puncak kurva NPS menuju frekuensi spasial rendah dan peningkatan nilai SNR, PSNR-dB, dan SSIM secara terus-menerus. Selain itu, tingkat noise dari data latih yang digunakan dalam proses pelatihan juga mempengaruhi performa akhir dari model. Pada penggunaan data latih dengan tingkat noise lebih rendah, penurunan nilai SNR, PSNR-dB, dan SSIM dan kenaikan kurva NPS yang terukur mengindikasikan tingkat noise lebih tinggi pada citra hasil supresi. Sementara itu, penggunaan data latih dengan tingkat noise lebih tinggi menyebabkan penurunan pada ketajaman citra yang ditandai dengan penurunan nilai frekuensi cut-off dari modulation transfer function (MTF 10%) hingga 45,41% dari citra awal.

In this study, an in-house RED-CNN-based algorithm was composed and trained using cylindrical PMMA phantom images with a diameter of 26 cm on five different noise simulation flux values (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, and 2,00 x 105). The model was tested on 21 x 26 cm elliptical PMMA phantom images on five different simulated noise flux values (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, and 5,00 x 105) to evaluate its denoising capability using signal to noise ratio (SNR), peak signal to noise ratio-decibel (PSNR-dB), structural similarity (SSIM) index, and noise power spectra (NPS) values as parameters. Evaluation on possible decrease of image quality was also performed by testing the model using homogenous phantom and wire phantom images acquired using five different mAs values (155 mAs, 200 mAs, 250 mAs, 275 mAs, and 300 mAs). Results show that the model was able to consistently increase SNR, PSNR-dB, SSIM values and the measured noise spectra. It is also shown that there exists a possibility of image over-smoothing when the model was applied on images with less noise, marked by the shift of the NPS curves towards lower spatial frequencies and the continuous increase of SNR, PSNR-dB, and SSIM. Moreover, the noise level of training data used in model training is shown to affect the final performance of the model. On the use of training data with lower noise level, the decrease of SNR, PSNR-dB, and SSIM, and the increase of NPS curves indicate higher noise level in suppressed images. Meanwhile, the use of training data with higher noise resulted on the decrease of denoised images sharpness, as indicated by an up to 45,41% decrease of modulation transfer function cut-off frequency (MTF 10%) from the original images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Skripsi ini membahas tentang Identifikasi & Pembelajaran on-line menggunakan salah satu teknik kendali intelegen, yaitu Jaringan Syaraf Tiruan (JST). JST mencoba untuk mengidentifikasi sistem SISO & MIMO dimana sistem SISO direpresentasikan oleh pressure process rig dan MIMO oleh pesawat udara Nirawak. Jaringan syaraf tiruan mencoba untuk mengidentifikasi control surface utama pesawat udara Nirawak SRITI menggunakan metode Levenberg-Marquardt. Metode Levenberg-Marquardt merupakan salah satu dari teknik optimasi pada jaringan syaraf tiruan sehingga diharapkan dengan menggunakan metode ini waktu proses dan keakuratan dapat lebih baik dari teknik kendali sebelumnya.

In this thesis , we discuss about identfication and online learning using one of kind of intelegen control technique (neural network) . neural network try to identify SISO that represented by pressure process RIG and MIMO that represented by Unmanned aerovehicle. Neural network try to identify 3 main control surface on Unmanned Aero Vehicle using levenberq marquardt algorithm. LM algorithm is one of the best, kind of neural network technique. we hope using this technique we can reduce calculation time, and can achieve more accurate result rather than previous technique."
Fakultas Teknik Universitas Indonesia, 2013
S52537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hening Pram Pradityo
"ABSTRAK
Salah satu faktor penting dalam pengukuran kinerja jaringan sensor nirkabel adalah penentuan lokasi dari divais yang ingin dilacak. Received Signal Strength (RSS) merupakan faktor yang bisa menjadi tolok ukur dalam melakukan prediksi lokasi dari divais yang dilacak. Dalam penelitian ini, dilakukan prediksi lokasi (localizaton fingerprinting) dari divais ZigBee yang
dilacak dengan menggunakan jaringan saraf tiruan. Pengolahan data oleh jaringan saraf menggunakan dua algoritma yang akan dibandingkan performanya, yaitu algoritma Levenberg Marquardt dan Resilient Backpropagation. Hasil penelitian ini memperlihatkan bahwa metode RSS fingerprinting mampu memprediksi koordinat divais ZigBee yang dilacak.
Algoritma Levenberg Marquardt memiliki performa yang lebih baik dengan nilai akurasi rata-rata 96,41% dibanding algoritma Resilient Backpropagation dengan kesalahan rata-rata 94,52%.

ABSTRACT
One of many important factors in the performance of Wireless Sensor Network is the localization for tracked node. Received Signal Strength (RSS) is a factor that can be used to track device location. The method that will be used in this research is fingerprinting by Artificial Neural Networks. RSSI data processing by neural networks use two training algorithms, i.e. Levenberg-Marquardt algorithm and Resilient Backpropagation algorithm. The performance of these two algorithms have been evaluated. The result of this research shows that RSS fingerprinting method can predict the coordinate of tracked ZigBee device. Levenberg-Marquardt algorithm has a mean accuracy of 96.41%, which is better than the performance of Resilient Backpropagation algorithm with 94.52%."
2017
T45346
UI - Tesis Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Annisaa Primadini
"Jaringan Saraf Tiruan adalah salah satu metode baru yang dikembangkan untuk pemecahan berbagai masalah kompleks yang tidak dapat diselesaikan secara analitik. Salah satu pengembangannya adalah metode jaringan saraf pembelajaran Radial Basis Function, dengan metode inisialisasi bobot Nguyen-Widrow dan Orthogonal Least Square (OLS). Akurasi dan kecepatan pembelajaran yang dimiliki oleh Radial Basis Function (RBF) sangat menarik untuk diaplikasikan pada sistem kendali. Pemodelan Forward dan Invers sistem dilakukan dengan metode RBF dengan mengambil data sistem SISO Pressure Process Rig. Setelah dilakukan pemodelan, jaringan saraf tiruan akan diuji dengan Direct Inverse Test. Hasil identifikasi sistem dan identifikasi invers pada sistem Pressure Process Rig memiliki hasil yang baik. Begitu pula saat diuji coba dengan Direct Inverse Test, sistem kendali mempunyai performa cukup baik, namun tidak menutup kemungkinan adanya skema model lain yang dapat digunakan dalam pemodelan sistem.

Artificial Neural Network is a newer field of study that could solve any complex problem that could not be done by analytical solution. Radial Basis Function (RBF) is one of the newer method of Artificial Neural Network with two distinct weight initialization method ; Nguyen-Widrow and Orthogonal Least Square (OLS) methods. RBF?s high recognition rate and very fast learning speed are interesting enough to be used in control system. RBF is used in forward and inverse identification in modelling Pressure Process Rig system. Direct Inverse Test is also done in order to make sure Radial Basis Function perform well in identifying a particular system. Radial Basis Function had a great perfomance in both forward and inverse system identification and also in Direct Inverse Test, but it is possible to have another learning scheme in system modelling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andhika Prastawa
"Energi Surya merupakan Sumber Energi Terbarukan yang sangat potensial sebagai alternatif sumber energi khususnya kelistrikan, baik untuk mengurangi dampak lingkungan, maupun meningkatkan pelistrikan di daerah terpencil. Penelitian ini dilakukan untuk membangun Model Prediksi Sumber Energi Terbarukan Tenaga Surya di Indonesia. Dalam Studi ini diajukan prosedur optimalisasi Jaringan Syaraf Tiruan berdasarkan Theorema Cybenko tentang universalitas JST dengan 1-hidden layer, dan algoritma Neural Network Construction with Cross-validation Samples (N2C2S) dalam optimalisasi jumlah neuron pada hidden layer. Pemodelan dilakukan pada wilayah Indonesia menggunakan gabungan data meteorologi dan Radiasi Global Surya Bulanan dari SSE NASA dan BMKG selama 4 tahun di 14 lokasi untuk proses training JST, dan 6 lokasi sebagai target prediksi. Pola JST Feed forward multi layer digunakan dalam model ini dengan menerapkan metoda pembelajaran back propagation. Hasil modeling menunjukkan bahwa model JST dengan 1 hidden layer menghasilkan model kriteria akurasi yang sangat baik dengan MAPE 4,1% dan R2 0,82, dibandingkan dengan MAPE 7,52% dan R2 0,48 pada teknik regresi sebagai metoda yang umum digunakan dalam modeling prediksi. Penelitian ini juga mendemonstrasikan bahwa model JST dapat merepresentasikan prediksi lebih akurat dari teknik regresi, khususnya di mana terjadi dinamika yang tinggi pada variabel prediktornya. Hal ini menyimpulkan tidak saja bahwa dengan prosedur optimisasi JST dapat disusun secara optimal untuk memberikan struktur yang lebih sederhana, namun JST yang dihasilkan memberikan piranti prediksi yang akurat dan responsif terhadap dinamika data, dengan akurasi yang dapat dipertanggungjawabkan.

This study is focused on modeling the Global Solar Radiation using Artificial Neural Network to predict GSR in a location in Indonesia which is available with meteorological data but lack with radiation measurement data. In this study, an optimalisation of ANN development is proposed based on Cybenko Theorem on universal approximator of single-hidden layer Multi Layer Perceptor combined Neural Network Construction with Cross-validation Samples (N2C2S) algorithm for optimum number of hidden neuron. Data for weather and solar radiation parameter are taken from NASA and BMKG (Indonesian Meterological and Climatology Agency) for 20 cities in Indonesia during the period for 4 year, divided into two groups of 14 cities for model development and 6 cities for model validation. The developed model provides much better performance with MAPE of 4,1% and of R2 0,82, as to compare with the widely used regression technique with MAPE of 7,52% and R2 of 0,48. The simulation shows that an ANN with single-hidden layer is an excellent approximator for the solar radiation function in the targeted area, in particular in the periode where high dynamics is present in predictor variables. This shows that not only the model is able to predict the solar radiation in a good agreement with the actual data, but more importantly that the high dynamics fluctuation of parameter is successfully captured.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1941
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>