https://access.unram.ac.id/wp-content/

UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Evaluasi kinerja metode RSS fingerprinting untuk menentukan lokasi perangkat zigbee yang dilacak dengan menggunakan jaringan saraf tiruan berbasis algoritma levenberg-marquardt dan resilient backpropagation = Performance evaluation of RSS fingerprinting method to track zigbee devices location using artificial neural networks based on levenberg-marquardt and resilient backpropagation algorithms / Hening Pram Pradityo

Hening Pram Pradityo; Riri Fitri Sari, supervisor; Anak Agung Putri Ratna, examiner; Muhammad Salman, examiner; Fransiskus Astha Ekadiyanto, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK
Salah satu faktor penting dalam pengukuran kinerja jaringan sensor nirkabel adalah penentuan lokasi dari divais yang ingin dilacak. Received Signal Strength (RSS) merupakan faktor yang bisa menjadi tolok ukur dalam melakukan prediksi lokasi dari divais yang dilacak. Dalam penelitian ini, dilakukan prediksi lokasi (localizaton fingerprinting) dari divais ZigBee yang
dilacak dengan menggunakan jaringan saraf tiruan. Pengolahan data oleh jaringan saraf menggunakan dua algoritma yang akan dibandingkan performanya, yaitu algoritma Levenberg Marquardt dan Resilient Backpropagation. Hasil penelitian ini memperlihatkan bahwa metode RSS fingerprinting mampu memprediksi koordinat divais ZigBee yang dilacak.
Algoritma Levenberg Marquardt memiliki performa yang lebih baik dengan nilai akurasi rata-rata 96,41% dibanding algoritma Resilient Backpropagation dengan kesalahan rata-rata 94,52%.

ABSTRACT
One of many important factors in the performance of Wireless Sensor Network is the localization for tracked node. Received Signal Strength (RSS) is a factor that can be used to track device location. The method that will be used in this research is fingerprinting by Artificial Neural Networks. RSSI data processing by neural networks use two training algorithms, i.e. Levenberg-Marquardt algorithm and Resilient Backpropagation algorithm. The performance of these two algorithms have been evaluated. The result of this research shows that RSS fingerprinting method can predict the coordinate of tracked ZigBee device. Levenberg-Marquardt algorithm has a mean accuracy of 96.41%, which is better than the performance of Resilient Backpropagation algorithm with 94.52%.

 File Digital: 1

Shelf
 T45346-Hening Pram Pradityo.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T45346
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xvi, 51 pages : illustration ; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T45346 15-18-939414883 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20454375
Cover