Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15437 dokumen yang sesuai dengan query
cover
Stefi Rahmawati
"Misalkan 𝐺=𝐺 𝑉,𝐸 adalah graf sederhana berhingga dengan 𝑉 simpul dan 𝐸 busur. Pelabelan simpul busur antiajaib (a,d) (PSBAA-(a,d)) adalah pemetaan satu-satu pada 𝑓 dari 𝑉 𝐺 pada 1,2,…, 𝑉 , dengan sifat bahwa untuk setiap busur 𝑥𝑦∈𝐸 𝐺 , himpunan bobot busur adalah 𝑓 𝑥 +𝑓 𝑦 ∶𝑥,𝑦∈𝑉 𝐺 = 𝑎,𝑎+𝑑,𝑎+2𝑑,…,𝑎+ 𝐸 −1 𝑑 , untuk suatu bilangan bulat positif 𝑎,𝑑. Suatu graf yang memiliki PSBAA-(a,d) disebut graf SBAA-(a,d). Untuk graf SBAA-(a,d) 𝐺, didefinisikan matriks adjacency yaitu matriks 𝐴𝐺= 𝑎𝑖𝑗 berukuran 𝑉 × 𝑉 dengan 𝑎𝑖𝑗 bernilai 1 jika terdapat busur yang menghubungkan simpul berlabel i dan simpul berlabel j, serta bernilai 0 jika tidak ada. Dalam skripsi ini diberikan pembahasan mengenai konstruksi graf SBAA-(a,2) baru dari graf SBAA-(a,2) yang sudah ada dengan menggunakan matriks adjacency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widita Endyarini
"Misalkan graf G adalah sebuah graf sederhana tak berarah dengan himpunan simpul V dan himpunan busur E, di mana 𝑛=|𝑉| dan 𝑚=|𝐺| berturut-turut menyatakan banyaknya simpul dan busur graf G. Pelabelan graceful adalah suatu pemetaan injektif f yang memetakan himpunan simpul ke {0,1,2…m} yang menginduksi pemetaan bijektif 𝜆 yang memetakan himpunan busur ke {1,2,…m}, dimana label busur tersebut merupakan selisih dari label simpul yang dihubungkan oleh busur tersebut. Graf yang mempunyai pelabelan graceful disebut graf graceful.Untuk graf G dengan m busur dan pemetaan 𝑓:𝑉(𝐺)→ 0,1,2,…𝑚 maka matriks adjacency diperumum adalah matriks 𝐴 𝑚+1 ×(𝑚+1) dengan entri 𝑎𝑖𝑗 adalah 1 apabila terdepat busur vivj yang menghubungkan simpul vi berlabel i dan simpul vj berlabel j. Matriks adjacency diperumum akan digunakan untuk mengkonstruksi graf graceful baru dari graf yang telah diketahui graceful. Konstruksi dilakukan dengan tiga cara. Pertama adalah dengan pemindahan entri matriks adjacency. Kedua adalah dengan pengabungan matriks adjacency dan penggantian entri diagonal tertentu. Ketiga adalah penggabungan matriks adjacency dan penambahan baris dan kolom. Hasil lain yang diperoleh adalah kelas graf graceful baru: 𝑃𝑝△𝐶𝑛 dan 𝐾1⋄𝑝𝐺."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Milla Rachmawati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Diyah Ayu Permata Sari
"Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan χsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu χsleat(Sfn) = n + 1.

Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by χsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which χsleat(Sfn) = n + 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirunnisa
"Salah satu cabang dari teori graf yang sedang berkembang saat ini adalah pelabelan graf. Pelabelan graf pertama kali di perkenalkan oleh Sedláček pada tahun 1963. Pelabelan adalah pemetaan satu-satu dari himpunan elemen-elemen graf ke himpunan bilangan (biasanya bilangan bulat positif) yang disebut label (Bača dan Miller, 2008). Beberapa jenis pelabelan yang dikenal sekarang ini antara lain pelabelan ajaib, pelabelan anti ajaib, pelabelan jumlah, pelabelan jumlah eksklusif, pelabelan graceful, pelabelan skolem graceful, pelabelan harmonis dan pelabelan harmonis ganjil. Pelabelan anti ajaib pun juga terdiri dari berbagai jenis, beberapa diantaranya adalah pelabelan simpul anti ajaib busur, pelabelan total anti ajaib simpul, pelabelan total anti ajaib busur, dan masih banyak lagi.

One branch of graph theory that is emerging today is graph labeling. Graph labeling was first introduced by Sedlacek on 1963. Labeling is one-to-one from the set of elements graf to set (usually a positive integer) called label (Read and Miller, 2008). Some types of labeling known today among other magical labeling, labeling anti magical, labeling amount, labeling number of exclusive, graceful labeling, labeling Skolem graceful, labeling harmony and harmonious labeling odd. Labeling anti magic was also composed of various types, some of which are anti-magic labeling knot bow, anti-magic total labeling knot, anti-magic total labeling arc, and still much more."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T45143
UI - Tesis Membership  Universitas Indonesia Library
cover
Khoirunnisa
"Misalkan ܩ(݌, ݍ) adalah graf dengan ݌ = |ܸ (ܩ) | dan ݍ = |ܧ(ܩ) | masing-masing adalah banyaknya simpul dan busur dari ܩ. Pelabelan simpul anti ajaib busur-(ܽ , ݀ ) dari graf ܩ (݌, ݍ) adalah pemetaan satu – satu ݂ : ܸ (ܩ) →{1, 2, 3, ... , ݌} sedemikian sehingga himpunan bobot busur {݂ (ݔ) + ݂ (ݕ): ݕݔ ∈
ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } dimana ܽ dan ݀ masing-masing bilangan bulat tak negatif. Pelabelan total busur anti ajaib−(ܽ , ݀ ) dari graf
ܩ(݌, ݍ) adalah pemetaan satu-satu pada ݂ : ܸ (ܩ) ∪ ܧ(ܩ) → {1, 2, ... , ݌ + ݍ} sedemikian sehingga himpunan bobot busur {݂ (ݔ) + ݂ (ݕݔ) + ݂ (ݕ) ∶ ݕݔ ∈
ܧ(ܩ)}={ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } untuk ܽ dan ݀ yang masing-masing bilangan bulat tak negatif. Jika ݂ (ܸ ) = {1, 2, ... , ݌} maka pelabelan f disebut pelabelan total busur anti ajaib super− (ܽ , ݀ ). Pada penelitian ini diberikan konstruksi pelabelan simpul anti ajaib busur−(ܽ , ݀ ) untuk ݀ = 1 dan pelabelan total anti ajaib busur super−(ܽ , ݀ ) untuk ݀ ∈ {0, 2} pada graf prisma yang diperumum, graf web tanpa simpul pusat, graf ilalang khusus.

Let ܩ(݌, ݍ) be a graph with ݌ = |ܸ (ܩ) | and ݍ = |ܧ(ܩ) | are the number of vertices and the number on edges of ܩ respectively. An edge anti magic vertex labeling on ܩ(݌, ݍ) is a bijective mapping ݂ : ܸ (ܩ) → {1, 2, 3, ... , ݌} so that the set of edge weight {݂ (ݔ) + ݂ (ݕ): ݕݔ ∈ ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } for positive integers ܽ and ݀ . An (ܽ , ݀ ) −edge antimagic total labeling on ܩ(݌, ݍ) is a bijective mapping ݂ : ܸ (ܩ) ∪ ܧ(ܩ) → {1, 2, ... , ݌ + ݍ}, so
that the set of edge weight {݂ (ݔ) + ݂ (ݕݔ) + ݂ (ݕ) ∶ ݕݔ ∈ ܧ(ܩ)} = {ܽ , ܽ + ݀ , ܽ + 2݀ , ... , ܽ + (ݍ − 1)݀ } for positive integers ܽ and ݀ . If ݂ (ܸ ) = {1, 2, ... , ݌} then ݂ is called (ܽ , ݀ ) − super edge antimagic total labeling. This thesis gives the construction of (ܽ , ݀ ) −edge anti magic vertex labeling for ݀ = 1 and (ܽ , ݀ ) −super edge anti magic total labeling for ݀ ∈ {0, 2} on generalized prism graph, web without centre vertex graph, and special ilalang graph.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andi Kurniawan Prihartomo
"Misalkan adalah graf dengan himpunan simpul himpunan busur dimana dan berturut-turut adalah banyaknya simpul dan busur pada G. Nilai total ketakteraturan simpul (total vertex irregularity strength) dari graf atau atau atau tvs (G) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil ) adalah bilangan terkecil k sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga sedemikian sehingga 𝑓 memetakan himpunan memetakan himpunan memetakan himpunan memetakan himpunan memetakan himpunanmemetakan himpunan V dan dan E ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif ke bilangan bulat positif {1,2,?,𝑘} dan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbeda dan bobot setiap simpulnya berbedadan bobot setiap simpulnya berbeda dimana bobot simpul adalah penjumlahan dari label simpul dan busur yang hadir pada simpul tersebut. Pada skripsi ini akan diberikan kontruksi pelabelan-k total tak teratur simpul dari graf sirkulan 1,2,3 untuk menunjukkan 1,2,3 ⌈ ⌉.

Suppose is a graph with set of vertices and set of edges where | | is the number of vertices and | | is the number of edge on G. A total vertex irregularity strength of graf G or or tvs (G) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of ) are the smallest value of k such suchsuch that that 𝑓 is a function from function from function from function from ∪ to aset ofaset of aset of positive integer positive integer positive integer positive integer positive integer positive integer positive integer positive integer {1,2,?,𝑘} such that the weight weightweightweight of every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices every two distinct vertices areareare different, different, different, different, different, where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum where the weight of vertex is sum a vert vert ex labelx label x label andand all itsall its all its all its incident edges labels incident edges labels incident edges labelsincident edges labelsincident edges labels incident edges labelsincident edges labels . In this skripsi the construction of total-k labelling vertex irregularity strength of graf 1,2,3 is given with 1,2,3 ⌈ ⌉."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1312
UI - Skripsi Open  Universitas Indonesia Library
cover
Alexandria Samantha Nicole
"Misalkan G suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G). Pelabelan antiajaib lokal pada graf G dengan |V(G)| simpul dan |E(G)| busur di definisikan sebagai fungsi f∶E(G)→{1,2,…,|E(G)|} sedemikian sehingga bobot dari sembarang dua simpul bertetangga u dan v berbeda, w(u)≠w(v), dengan w(u)= ∑_(e∈E(u))〖f(e)〗 dan E(u) adalah himpunan busur yang hadir pada simpul u. Terdapat suatu notasi χ_la (G) yang merupakan bilangan kromatik pada pelabelan antiajaib lokal yaitu minimum banyak bobot berbeda pada simpul di suatu graf. Graf lili dapat dinotasikan sebagai l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} dengan n≥3. Penelitian ini bertujuan untuk mengkonstruksi pelabelan antiajaib lokal pada graf lili l_n untuk mendapatkan nilai χ_la(l_n). Dari hasil penelitian, diperoleh bilangan kromatik pelabelan antiajaib lokal pada graf lili adalah χ_la(l_n)=2n+3.

Let G be a graph with vertex set V(G) and edge set E(G). A local antimagic labelling on graph G with |V(G)| vertices and |E(G)| edges is defined as a function f∶E(G)→{1,2,…,|E(G)|} such that the weights of any two adjacent vertices u and v are different, w(u)≠w(v), where w(u)= ∑_(e∈E(u))〖f(e)〗 and E(u) is the set of edges incident to vertex u. There is a notation χ_la (G), which represents the chromatic number in local antimagic labeling, defined as the minimum number of distinct weights on the vertices of a graph. The lilly graph can be denoted as l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} with n≥3. This research aims to construct a local antimagic labeling on lilly graph l_n to obtain the value of χ_la(l_n). The research results show that the chromatic number of the local antimagic labeling on the lilly graph is χ_la(l_n)=2n+3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widya M. Niagara
"Misalkan G = (V, E) adalah suatu graf berhingga, sederhana dan tak berarah dengan n = |V| simpul dan e = |E| busur. Pelabelan total (a, d)-busur anti ajaib adalah suatu pemetaan bijektif λ dari V  E ke himpunan bilangan bulat {1, 2, …, n + e}, sedemikian sehingga himpunan dari seluruh bobot busur membentuk barisan aritmatika dengan suku awal a > 0 dan beda d ≥ 0. Dalam skripsi ini diberikan konstruksi pelabelan total (a, d)-busur anti ajaib pada beberapa gabungan graf dari kelas graf yang sama, yaitu gabungan graf lingkaran, gabungan graf matahari dan gabungan graf dumbbell, untuk d = 1 dan d = 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Alif Asyad Kurniatama
"Pelabelan total busur ajaib pertama kali dikenalkan oleh Kotzig dan Rosa. Minat terhadap pelabelan ini diteruskan berkat paper Ringel dan Llad³ tahun 1996. Pelabelan total busur ajaib adalah pemetaan satu-satu pada dari suatu graf dengan menyatakan banyaknya simpul dari dan menyatakan banyaknya busur dari, dan terdapat bilangan bulat positif sedemikan sehingga untuk setiap busur pada. Pelabelan total busur ajaib  pada graf dikatakan total super busur ajaib apabila. Konsep pelabelan total super busur ajaib pertama kali diperkenalkan oleh Enomoto dkk. pada tahun 1998. Graf prisma merupakan sebuah produk cartesian dari graf lingkaran dan graf lintasan. Sedangkan graf tangga merupakan sebuah produk cartesian antara graf lingkaran dan graf lintasan. Pada artikel ini dibahas konstruksi pelabelan total super busur ajaib pada kelas graf prisma dan kelas graf tangga. Kemudian ditunjukkan keterkaitan pelabelan total super busur ajaib antara graf prisma  dan graf tangga.

Originally the edge magic total labeling was introduced and studied by Kotzig and Rosa who called it magic valuations. Interest in these labelings has been rekindled due to Ringel and Llad³’s paper in 1996. Edge magic total labelling is a one-one onto mapping of graph with numbers of vertices of and number of edges of, so that there exist integer such that for every edge in. Edge magic total labeling of graph is called super edge magic total labeling if. The concept of super EMT graphs was introduced by Enomoto et al. in 1998. Prism graph is a cartesian product of cycle and path. While ladder graph is a cartesian product of dan. In this article, the construction of super edge magic total labeling is discussed of prism graphs and ladder graphs. Then it is shown the super edge magic total labeling relation between prism graph  and ladder graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>