Honey content is constructed by a high sugar content. One parameter of the honey qualities can be seen from the sugar contained in it. Therefore, a system is needed to predict additional sugar content as one of the authenticity parameters of honey and can be used to classify original honey and adulterant honey. The honey image is obtained using the transmittance mode in the VNIR wavelength range of 400 - 1000 nm. The complete system consists of a Hyperspectral camera on 224 band, slider, 150 W halogen lamp and light diffuser. The processing method performs image correction, segmentation, feature extraction, feature reduction, regression models, and classification models. Partial Least Square Regression (PLSR) was used as a reduction feature and a regression model for quantitative analysis using the honey transmittance profile. Soluble Solid Content (SSC) is measured using Digital Refractometer Pocket Hand Held as reference data. Principal Component Analysis (PCA) is used as a feature reduction and Support Vector Machine (SVM) is used to classify the original honey and adulterant honey. Five types of honey from the same producer were used as honey samples. The artificial sugar is added to the original honey to produce 6 variants of Soluble Solid Content. RMSE and R2 results for each test data are 2,33 dan 0,84. The results obtained from the test data for the classification models are 88,9% for the accuracy, 12% for the missclassification rate (MR), 4% for the False Positive Rate (FPR), and 5% for the False Negative Rate (FNR). Based on these results, the system can be used as an alternative method for predicting SSC and classifying original honey and adulterant honey with very good accuracy.
"