https://access.unram.ac.id/wp-content/

UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Sistem pengenalan asal daerah beras di Indonesia menggunakan artificial intelligence berbasis citra VNIR (Visible - Near Infrared) = VNIR image (visible-near infrared)-based identification system for rice grain origin in Indonesia using artificial intelligence

Zhorif Maulana Akram; Adhi Harmoko Saputro, supervisor; Martarizal, examiner; Santoso Soekirno, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Negara Indonesia merupakan salah satu negara di dunia, khususnya di benua Asia yang menjadikan beras sebagai bahan pangan pokok. Hal tersebut membuat permintaan akan bahan pangan tersebut menjadi tinggi, dan membuat banyak orang menanam padi di berbagai wilayah di Indonesia. Namun hal tersebut tidak membuat semua beras hasil panen dari berbagai wilayah menjadi bernilai sama di pasaran. Sehingga beras-beras yang ada tersebut kemudian dibedakan berdasarkan wilayah tanamnya. Mengidentifikasi jenis beras membutuhkan analisis DNA yang menggunakan PCR yang tentunya menghabiskan banyak waktu. Penelitian ini dibuat dengan tujuan membuat suatu sistem identifikasi serta menganalisis pengaruh wilayah tanam terhadap harga beras yang beredar di pasaran. Memanfaatkan pencitraan hiperspektral serta melakukan pemodelan klasifikasi dalam lima jenis beras yang berasal dari wilayah tanam berbeda yaitu Bandung, Indramayu, Subang, Karawang, dan Palembang. Kemudian dua skema variasi pada pemodelan klasifikasi, yaitu PCA – SVM dan CNN. Membandingkan kedua skema tersebut didapatkan akurasi rata – rata untuk pemodelan klasifikasi PCA-SVM sebesar 86.45% dan 97% untuk pemodelan klasifikasi CNN.

Indonesia as one of nations in the world specifically in Asian continent that consumed rice as their main diet. The phenomena led rice as a high demanding food in the country and made many people in the country did paddy harvesting in many regions.   However, this did not make all the rice harvested from various regions had the same value in the market.  Then people differentiated rice from where it harvested. Identifying types of rice requires DNA analysis using PCR which is time consuming. This research was made with the aim of creating an identification system and analyzing the influence of the planting area on the price of rice on the market. Utilizing hyperspectral imaging and classification algorithm in five types of rice originating from different planting areas namely Bandung, Indramayu, Subang, Karawang, and Palembang. Then the two variation schemes in classification modeling, namely PCA - SVM and CNN. Along with comparing the two schemes of classification models, the average accuracy obtained for PCA-SVM classification model is 86.45% and 97% for CNN classification model.

 File Digital: 1

Shelf
 S-Zhorif Maulana Akram.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 48 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-93361507 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20510560
Cover