Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrey Sapati Wirya
"ABSTRAK
Penelitian ini bertujuan untuk memperoleh model hydrocracking dalam trickle bed reactor untuk produksi green fuel menggunakan katalis Ni-W berpenyangga silika alumina, mendapatkan ukuran reaktor trickle bed untuk perpindahan panas yang baik dan mencari kondisi optimum untuk tingkat kemurnian tinggi. Penelitian diawali dengan studi pustaka tentang green fuel, kinetika hydrocracking, trickle bed reactor dan pemodelan. Kemudian model ditentukan dan dikembangkan untuk dilakukan simulasi serta diverifikasi untuk menguji konvergensi. Hasil simulasi dianalisis secara teknis untuk mendapatkan kondisi optimum dengan kemurnian yang tinggi. Dari hasil simulasi didapatkan bahwa kemurnian produk diesel mencapai 44,22 pada temperatur 420 0C. Produk kerosin dapat mencapai kemurnian sebesar 21,39 pada temperatur 500 0C. Produk nafta dapat mencapai kemurnian sebesar 25,30 pada temperatur 500 0C.
hr>
ABSTRAK
The purposes of this research are to get hydrocracking model in trickle bed reactor to produce green fuel using Ni W supported alumina silica catalyst, to determine the size of trickle bed reactor which provide good heat transfer, and to get optimum condition for high purity product. The research is initiated by literature study of green fuel, hydrocracking kinetics, trickle bed reactor, and basic of modeling. The model is determined and developed to perform simulation under different conditions. Model is verified to check the convergence. Simulation results are analyzed technically to achieve optimum condition with high product purity. Simulation results show that the diesel product purity is 44.22 at 420 0C. The Kerosene product could achieve purity of 21.39 at 500 0C. The naphta product could achieve purity of 25.30 at 500 0C."
2017
S68050
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitriani Meizvira
"ABSTRACT
Gas alam yang diambil dari sumbernya masih memiliki sejumlah senyawa pengotor yang harus dihilangkan, yang salah satunya adalah gas asam seperti CO2 dan H2S. Proses yang paling umum digunakan untuk menghilangkan gas asam adalah dengan absorpsi yang dilangsungkan di kolom absorpsi. Untuk mendukung kelancaran proses tersebut, perlu diterapkan sistem pengendalian pada proses. Pada penelitian ini, akan diterapkan penggunaan multivariable model predictive control MMPC untuk mengendalikan proses absorpsi. MMPC adalah salah satu pengendali tingkat lanjut advanced control yang diharapkan dapat memberikan performa yang lebih baik dalam menjaga kestabilan proses, dan dapat mengatasi interaksi antarvariabel pada proses absorpsi yang memiliki sistem multiple input multiple output MIMO . Pasangan variabel yang teridentifikasi memiliki interaksi adalah tekanan gas dan laju alir make up water masuk absorber. Dengan menggunakan MMPC, didapatkan nilai ISE yang lebih baik daripada pengendali PI yang digunakan di lapangan sebesar 42,6 untuk pengendalian tekanan dan 65,04 untuk pengendalian laju alir. MMPC pun memberikan respon yang lebih baik dalam mengatasi interaksi antarvariabel.

ABSTRACT
Raw natural gas contains impurities that need to be removed before it can be utilized as energy source. One of the impurities is sour gas, which includes CO2 and sulphur compound such as H2S. The most common process used to remove sour gas is absorption, which is carried out in an absorption column. One of the essential step to support the operation is applying control strategy on the process. In this research, multivariable model predictive control MMPC will be applied as the controller for absorption process. MMPC is classified in advanced control category, and is expected to give a better performance in handling the process, and is able to overcome intervariable interaction that is prone to happen in multiple input multiple output MIMO system. The identified intervariable interaction is between the pressure of gas feed in and the flow of make up water to absorber. By implementing MMPC, the ISE of controller rsquo s performance are improved from the PI controller that is currently used in the plant. The improvement for ISE is 42,6 for pressure control and 65,04 for flow control. MMPC implementation also shows a better response in handling intervariable interaction in the process."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erlangga Falaq Ajipakerti
"Indonesia saat ini berupaya mengembangkan sektor energi terbarukan untuk memenuhi kebutuhan energi nasional yang selama ini didominasi oleh energi fosil. Indonesia memiliki potensi energi gelombang laut yang tinggi khususnya di Jawa Timur yang dapat diekstraksi dan diubah menjadi energi listrik dengan teknologi wave dragon yang merupakan salah satu teknologi pembangkit listrik tenaga gelombang laut tercanggih. Lokasi yang ditentukan paling ideal untuk implementasi di Jawa Timur adalah pada koordinat 112.225 x -8.388. Analisis risiko menunjukkan bahwa untuk tingkat kepercayaan 95% interval kepercayaan untuk NPV adalah antara $4.850.212 dan $4.416.399, PBP antara 4,3 dan 4,09 tahun, dan IRR antara 22,16% dan 23,53%. Untuk strategi yang tersedia, opsi expand paling baik dilaksanakan pada tahun ke-20, opsi contract dapat dieksekusi segera setelah tahun ke-11, opsi abandon dapat dieksekusi paling awal pada tahun 11.2, dan opsi open dapat dilaksanakan pada tahun ke-1 hingga 19.9.

Indonesia is currently trying to develop the renewable energy sector to supply the national energy demand that has been dominated by fossil energies for years. Indonesia has a high potential of ocean wave energy especially in East Java that can be extracted and converted into electrical energy with wave dragon technology which is one of the most advance ocean waves powered power plant technology. The location that is determined to be the most ideal for the implementation in east java is at the coordinates of 112.225 x -8.388. The risk analysis shows that for the 95% confidence level the confidence interval for NPV is between of $4,850,212 and $4,416,399, the PBP is between 4.3 and 4.09 years, and IRR between 22.16% and 23.53%. For the available strategies the expand option is best to execute at year 20, the contract option can be executed as soon as year 11, the abandon option can be executed earliest at year 11.2, and the open option can be implemented at year 1 until 19.9.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adittya Atmadja
"Pada tahun 2018, Merapi kembali memperlihatkan tanda keaktifannya. Letaknya yang dekat dengan area penduduk membuat Gunung Merapi perlu dipantau sebagai langkah mitigasi. Penelitian ini bertujuan untuk menganalisis aktivitas vulkanik yang terjadi dengan metode gravitasi-mikro. Melalui gravitasi-mikro dapat dilihat perubahan nilai gravitasi dari waktu ke waktu, mencerminkan perubahan massa ataupun densitas yang terjadi. BPPTKG telah melakukan pengukuran menggunakan gravimeter Scintrex CG-5 pada 10 titik dari utara ke selatan di bulan April dan Desember 2018; Maret dan Desember 2019; serta Agustus 2020. Analisis hasil perubahan gravitasi juga dikorelasikan dengan catatan kejadian erupsi, data seismisitas, deformasi EDM, emisi gas SO2 serta informasi pendukung lainnya dari Laporan Aktivitas Mingguan. Didapati perubahan nilai gravitasi dari waktu ke waktu akibat aktivitas vulkanik yang terjadi sepanjang April 2018 – Agustus 2020, dengan nilai paling fluktuatif pada area relatif dari puncak ke sisi utara dan diduga sebagai kantung magma dangkal. Kemudian dilakukan juga estimasi perubahan massa material vulkanik pada area tersebut dari setiap periodenya. Pada Desember 2018 terjadi pengurangan massa sebesar 9,148 megaton akibat ekstrusi material vulkanik dari erupsi sebelumnya serta peristiwa pertumbuhan kubah lava. Pada Maret 2019 terjadi proses kristalisasi magma dan pelepasan gas, menyebabkan penambahan massa sebesar 0,658 megaton. Pada Desember 2019 terjadi pengurangan massa sebesar 8,867 megaton setelah kejadian erupsi. Pada Agustus 2020, terjadi penambahan massa akibat injeksi suplai magma baru sebesar 7,13 megaton. Injeksi ini diduga berkaitan erat dengan aktivitas Merapi di tahun 2021.

In 2018, Merapi volcano begin to show volcanic activity. It is located near densely populated area and need to be monitored for mitigation. The purpose of this research is to analyze the volcanic activities using microgravity method. Changes in gravity values from time-to-time reflecting changes in subsurface mass and density, can be seen through microgravity. A total of 10 stations measurement from north to south were acquired by BPPTKG using Scintrex CG-5 gravimeter in April 2018 and December 2018; March 2019 and December 2019; and August 2020. Analysis of changes in gravity value also corelated to eruption log, seismic activities, emission of SO2 gas, EDM deformation, and other supporting information stated in Weekly Activity Report. Changes in gravity values were found from time-to-time due to volcanic activities during April 2018 - August 2020 with the most fluctuating values found in the area relative from the peak to the northside and suspected to be a shallow magma pocket. Then the estimation of changes in the mass of volcanic material in that area also conducted from each period. In December 2018, there was a 9,148 megatons mass deficit due to the extrusion of volcanic material following to prior eruptions and growth of the lava dome. Magma crystallization and degassing process occurred in March 2019, lead to 0,658 megatons increased mass. 8,867 megatons mass deficit occurred in December 2019, following to the prior eruptions. In August 2020, there was a 7,13 megatons mass increased due to injection of new magma supply. This injection is expected correlate to Merapi activity in 2021.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Sitawati
"Tesis ini menganalisisbagaimana pengaruh spesifikasi gas jual untuk memenuhi keperluan pembeli bahan bakar gas yang berbeda terhadap keekonomian pemrosesan gas berkadar CO2 tinggi, seperti gas dari ladang gas X, dengan menggunakan teknologi membrane. Opsi spesifikasi gas jual yang dipertimbangkan adalah gas jual untuk pembeli dari LNG plant (15% mol kadar CO2), fertilizer plant (20% mol kadar CO2), power plant(30% mol kadar CO2). Penelitian ini meliputi analisa kuantitatif terhadap indikator keekonomian dan analisa sensitivitas terhadap parameter yang berpengaruh terhadap keekonomian pemrosesan gas X. Hasil penelitian menyarankan bahwa opsi spesifikasi gas jual untuk fertilizer plant (20% mol kadar CO2) memberikan indikator keekonomian terbaik dan paling tidak sensitif terhadap perubahan parameter yang berpengaruh terhadap keekonomianpemrosesan gas X.

The focus of this study is to analyze theimpact of sales gas specification on the economics of membrane processing technology treating high CO2 content gasto be applied by PT. Y to develop X Block Gas.There are three sales gas specification evaluated in the study i.e. feed gas for LNG plant (15% mole CO2), feed gas for fertilizer plant (20% mole CO2), and feed gas for power plant (30% mole CO2). This study is quantitatively analyzing economic indicators and analyzing the sensitivity of major parameters such as gas price, operating expenditure, and capital expenditure affecting economics of processing of high CO2 content gas from X Block. It is suggested that the option to produce feed gas for fertilizer plant (20% mole CO2) gives the best result in terms of Net Present Value, Internal Rate of Return and Pay Back Period, as such option is not sensitive to parameters affecting the economics of X Block gas processing."
Depok: Universitas Indonesia, 2012
T30061
UI - Tesis Open  Universitas Indonesia Library
cover
Siti Chodijah
"ABSTRAK
Material karbon aktif berukuran mikro (mikro-karbon aktif) dikembangkan untuk
memperoleh material penyimpan hidrogen. Penelitian ini bertujuan untuk
mempelajari efektivitas penggunaan penggilingan bola planetari dengan
parameter, ratio sampel terhadap bola 1:5 selama 30 jam, kecepatan 200
putaran/menit dalam kondisi penggilingan non-inert. Karbon aktifasi hasil
pemilingan kemudian dibentuk pelet dengan penambahan gula cair sebagai
pengikat dan KOH sebagai larutan aktifasi. Material karbon aktif berukuran 36,41
mikron meningkat setelah penggilingan bola sebanyak 13,6 % untuk batok kelapa
dan 0,74 % untuk batubara. Pelet karbon aktif (batok kelapa) memiliki nilai
penyerapan yang lebih tinggi jika dibandingkan serbuk karbon aktif. Kapasitas
penyerapan pelet karbon aktif meningkat hingga ± 75,87% pada temperatur
rendah -5oC dan ± 78 % pada temperatur ruang 25oC.

ABSTRACT
Micro-activated carbons have been developed for hydrogen storage materials. The
research was conducted to observe the effect of planetary ball milling with the
ratio sample to ball 1:5 for 30 hours, 200 rev / min in non-inert conditions. Ball
milled activated carbon material were then formed as pellet with addition of liquid
sugar as binder and KOH as activated reagents. The pellet was reactivated at 550o
C for 1 hour. Fraction of activated carbon material with the size of less than 36.41
microns increased after ball milled as mucs as 13.6% for coconut shell and 0.74
for coal. Pellet activated carbon has higher adsorption capacity than powdered
activated carbon. Adsorption capacity of pellet activated carbon up to ± 75.87% in
low temperature -5oC and 78% in room temperatur 25oC."
2011
T30032
UI - Tesis Open  Universitas Indonesia Library
cover
Achmad Farizzi F.S
"Studi pada nanokarbon sintesis dari polietilen telah berkembang saat ini Penelitian ini menggunakan polietlen tereftalat karena kandungan karbon tinggi Penelitian ini juga diusulkan karena dalam produksi nanocarbon masih bergantung dan menggunakan gas alam sebagai bahan baku Karena gas alam tidak dapat di perbaharui polietlen tereftala diusulkan karena itu menjadi sangat sulit untuk mendaur ulang dan terakumulasi Dalam penelitian ini PET diubah menjadi nanocarbon dengan metode pirolisis Pemotongan PET ditempatkan dalam reaktor pirolisis dan dipanaskan sampai 450oC untuk dekomposisi termal menjadi gas hidrokarbon ringan Berbagai lapisan katalis nikel ditempatkan dalam reaktor sintesis yang terhubung ke reaktor pirolisis dan proses sintesis dilakukan pada suhu 800oC selama satu jam Gas Argon ditambahkan selama proses dan juga hidrogen untuk variasi lainnya Hasil dikarakterisasi menggunakan SEM FE SEM dan XRD menunjukkan nanocarbons dalam bentuk nanotube karbon atau nanofiber telah terbentuk pada permukaan katalis nikel.

The study on carbon nanotubes synthesis from polyethylene has been developing nowadays. This process uses polytheylene terephthalate because of its high carbon content. The process is also proposed because in the past nanocarbon production has mainly used natural gas as the raw material. Because natural gas is not renewable polyethylene terephthalate was proposed due to it being very hard to recycle and accumulates. In this research, PET was converted into nanocarbon by a method of pyrolysis. PET cuts were placed in the pyrolysis reactor and was heated to 450oC for thermal decomposition into light hydrocarbon gases. Various nickel catalyst coating were placed in the synthesis reactor, which was connected to the pyrolysis reactor and synthesis process was done at a temperature of 800oC for one hour. Argon gas was added during the process and also hydrogen for the other variation. Results were characterized using SEM, FE-SEM and XRD, showing nanocarbons in a form of carbon nanotube or carbon nanofiber were formed on the surface of the nickel catalyst."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55490
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paviliyanti Juwita
"[ABSTRAK
Tulisan ini membahas ruang lingkup tahapan pemisahan (distilasi), sebagai
tahapan yang penting dalam pemisahan komponen agar mendapatkan komponen
yang murni. Dalam tahapan distilasi ini, terjadi perbedaan yang dipengaruhi oleh
tekanan, temperatur, konsentrasi, dan kecepatan. Penelitian ini bertujuan untuk
menganalisa nilai kehilangan eksergi di setiap tray pada konfigurasi tertentu dari
setiap pemisahan multikomponen. Komponen yang dipisahkan dari kilang LNG
berupa metana, etana, propana, n-butana, i-butana dan i-pentana. Data eksperimen
khususnya komposisi untuk komponen yang dipisahkan tersebut diperoleh dari
penelitian sebelumnya. Metode perhitungan yang digunakan mengacu pada
penelitian sebelumnya. Konfigurasi pemisahan komponen berdasarkan titik didih
menghasilkan exergy loss sebesar 9.220,57 MW. Utility cost yang dibutuhkan
untuk kondensor sebesar US$ 6.892.639 dan untuk reboiler sebesar US$ 11.054.
Konfigurasi pemisahan komponen berdasarkan fraksi terbesar menghasilkan
exergy loss sebesar 12.582,29 MW. Utility cost yang dibutuhkan untuk kondensor
sebesar US$ 6.898.806 dan untuk reboiler sebesar US$ 19.382. Konfigurasi
pemisahan komponen berdasarkan equimolar menghasilkan exergy loss sebesar
23.012,08 MW. Utility cost yang dibutuhkan untuk kondensor sebesar US$
6.900.682 dan untuk reboiler sebesar US$ 21.939.Semakin kecil nilai exergy loss
akan semakin kecil pula utility cost yang dibutuhkan.

ABSTRACT
This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too., This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.]"
2015
T43152
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Ratna Mustafida
"ABSTRAK
Bahan bakar batubara menyumbang 44% dari total emisi CO2 global, serta merupakan sumber terbesar emisi gas GHG (greenhouse gas) yang memicu perubahan iklim. Pada tahun 2026 diproyeksikan penggunaan batubara masih 50,4%, selain itu Indonesia telah menandatangani perjanjian Paris pada tahun 2015 Indonesia harus mengurangi emisi CO2 sampai 29% pada tahun 2030. Clean Coal Technologi yang ada saat ini adalah Ultra Supercritical (USC) dan Integrated Gasification Combined Cycle (IGCC). Untuk mengetahui efisiensi dari kedua teknologi tersebut diperlukan pendekatan eksergi dalam analisisnya, analisis ekonomi diperlukan untuk menentukan kelayakan pembangunannya, serta harus diterima dari aspek lingkungan. Dari hasil penelitian diperoleh bahwa teknologi IGCC memiliki efisiensi eksergi lebih tinggi yaitu 41.51% sedangkan USC 33.71%, dengan jumlah batubara yang sama net power yang diproduksi sebesar 42 MW untuk IGCC dan 22 MW untuk USC. Dari segi ekonomi biaya investasi dan LCoE untuk teknologi IGCC dan USC secara berturut-turut (Rp 963,875,195,117; Rp 2,334/kWh) dan (Rp 309,489,207,487; Rp 2,993/kWh). Emisi CO2 yang dihasilkan setelah dilakukan capture pada IGCC sebesar 0.997 ton CO2/MWh dan USC sebesar 2.242 ton CO2/MWh. Sehingga dapat disimpulkan bahwa teknologi IGCC merupakan teknologi pembangkit listrik yang lebih tepat untuk diterapkan di Indonesia

ABSTRACT
Coal fuel contributes 44% of total global CO2 emissions and is the largest source of GHG (greenhouse gas) emissions, which triggers climate change. In 2026, the composition of Indonesia's electricity production projected to be 50.4% using coal fuel. Indonesia has signed a Paris agreement in 2015 in which Indonesia must reduce CO2 emissions by 29% in 2030. Clean Coal Technology currently is Ultra Supercritical (USC) and Integrated Gasification Combined Cycle (IGCC). To find out the efficiency of the two technologies exergy approach is required in its analysis; economic analysis also needed to determine the feasibility of its development and accepted from environmental aspects. From the results, that IGCC technology has a higher exergy efficiency of 41.51% while USC 33.71%, with the amount of coal with the same net power produced at 42 MW for IGCC and 22 MW for USC. In terms of economic investment costs and LCoE for IGCC and USC technologies respectively (Rp. 963,875,195,117; Rp. 2,334 / kWh) and (Rp. 309,489,207,487; Rp. 2,993 / kWh). CO2 emissions produced after capture in IGCC technology are 0.997 tons CO2/MWh and USC of 2.242 tons of CO2/MWh. Therefore, it concluded that IGCC technology is a power generation technology that is more appropriate to applied in Indonesia."
2019
T53458
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>