Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Evan Muhammad Fachriza
"Suatu graf G=(V,E) terdiri dari himpunan simpul hingga tak kosong V(G) dan himpunan busur hingga E(G). Pelabelan total antiajaib lokal pada graf G didefinisikan sebagai bijeksi f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} sedemikian sehingga untuk semua simpul u dan v bertetanggan berlaku w_t(u)=/w_t(v), dengan w_t(u)=f(u)+sum_(e in E(u))(f(e)) adalah bobot simpul u, dan E(u) adalah himpunan busur yang hadir pada simpul u. Pada pelabelan total antiajaib lokal pada graf G, tiap bobot simpul w_t(u) yang berbeda dianggap sebagai warna yang berbeda, sehingga pelabelan total antiajaib lokal pada graf G menginduksi pewarnaan simpul pada graf G, dengan banyaknya minimum warna yang digunakan atau Bilangan kromatiknya dinotasikan oleh chi_(lat)(G). Graf barbel roda BW_n, dengan n>=3, didefinisikan sebagai graf yang memiliki dua subgraf roda W_n yang dihubungkan oleh satu busur pada masing-masing simpul pusatnya. Penelitian ini dilakukan dengan tujuan untuk mengonstruksi pelabelan total antiajaib lokal pada graf barbel roda BW_n untuk menentukan Bilangan kromatik total antiajaib lokalnya.

A graph G=(V,E) consists of finite nonempty vertices set V(G) and finite edges set E(G). A local antimagic total labeling on graph G defined as a bijective mapping f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} such as for all two adjacent vertices u and v applies w_t(u)=/w_t(v), where w_t(u)=f(u)+sum_(e in E(u))(f(e)) is a weight of vertex u, and E(u) is a set of adjacent edges on vertex u. Each distinct vertex weights in local antimagic total labeling are considered as distinct colors, so that local antimagic total labeling on graph G induces vertex coloring on graph G, with minimum numbers of colors or its chromatic number is denoted as chi_(lat)(G). Barbell wheel graph BW_n, with n>=3, is defined as a graph with two wheel-subgraphs W_n that are connected by one edge at each center vertex. This research was conducted to construct local antimagic total labeling on barbell wheel graph BW_n to determine its local antimagic total chromatic number."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prasetya Nugroho Hutomo
"Sebuah graf dengan simpul dapat direpresentasikan sebagai matriks simetris berukuran nxn seperti matriks ketetanggaan dan laplacian. Matriks simetris dijamin oleh teorema spektral, memiliki nilai eigen lengkap (ruang eigen setara dengan R^n). Hal ini memberikan kemungkinan untuk menelaah sifat graf dengan menggunakan nilai eigen dan vektor eigen matriks ketetanggaan dan laplacian. Himpunan nilai eigen beserta multiplisitasnya disebut sebagai spektrum. Pada skripsi ini dibahas tentang sifat dari spektrum matriks ketetanggaan dari graf teratur yang diasosiasikan pada nilai eigen terbesarnya serta sifat dari spektrum matriks laplacian dari graf teratur yang diasosiasikan pada rata-rata nilai eigen. Selanjutnya, juga dibahas keterhubungan antara spektrum matriks laplacian dan ketetanggaan pada graf reguler.

A graph with vertices can be represented as a symmetric matrix of size nxn, such as an adjacency matrix and Laplacian matrix. Symmetric matrices, guaranteed by the spectral theorem, have a complete eigenvalue (eigenspace equal to R^n). This provides ways to learn graphs using eigenvalues and eigenvectors of their adjacency and laplacian matrices. A spectrum is a set of eigenvalues together with their multiplisities. This thesis discuss the properties of the spectrum of the adjacency matrix of regular graphs associated with their largest eigenvalue, as well as the properties of the spectrum of the Laplacian matrix of regular graphs associated with the average eigenvalue. Subsequently, the interrelation between the spectra of the laplacian and adjacency matrices in regular graphs will be examined."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alexandria Samantha Nicole
"Misalkan G suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G). Pelabelan antiajaib lokal pada graf G dengan |V(G)| simpul dan |E(G)| busur di definisikan sebagai fungsi f∶E(G)→{1,2,…,|E(G)|} sedemikian sehingga bobot dari sembarang dua simpul bertetangga u dan v berbeda, w(u)≠w(v), dengan w(u)= ∑_(e∈E(u))〖f(e)〗 dan E(u) adalah himpunan busur yang hadir pada simpul u. Terdapat suatu notasi χ_la (G) yang merupakan bilangan kromatik pada pelabelan antiajaib lokal yaitu minimum banyak bobot berbeda pada simpul di suatu graf. Graf lili dapat dinotasikan sebagai l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} dengan n≥3. Penelitian ini bertujuan untuk mengkonstruksi pelabelan antiajaib lokal pada graf lili l_n untuk mendapatkan nilai χ_la(l_n). Dari hasil penelitian, diperoleh bilangan kromatik pelabelan antiajaib lokal pada graf lili adalah χ_la(l_n)=2n+3.

Let G be a graph with vertex set V(G) and edge set E(G). A local antimagic labelling on graph G with |V(G)| vertices and |E(G)| edges is defined as a function f∶E(G)→{1,2,…,|E(G)|} such that the weights of any two adjacent vertices u and v are different, w(u)≠w(v), where w(u)= ∑_(e∈E(u))〖f(e)〗 and E(u) is the set of edges incident to vertex u. There is a notation χ_la (G), which represents the chromatic number in local antimagic labeling, defined as the minimum number of distinct weights on the vertices of a graph. The lilly graph can be denoted as l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} with n≥3. This research aims to construct a local antimagic labeling on lilly graph l_n to obtain the value of χ_la(l_n). The research results show that the chromatic number of the local antimagic labeling on the lilly graph is χ_la(l_n)=2n+3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ompusunggu, Agustinus Bravy Tetuko
"Dalam konteks matematika komputasi, tensor sering dipandang sebagai larik multidimensi, dengan jumlah dimensinya disebut sebagai orde tensor tersebut. Tensor dapat digunakan untuk merepresentasikan berbagai jenis data, seperti data gambar dan data psikometri. Salah satu masalah yang penting dalam komputasi tensor adalah aproksimasi rank rendah tensor. Untuk sebuah tensor A, masalah aproksimasi rank rendah adalah mencari tensor B yang nilainya paling mendekati tensor A tetapi memiliki rank tertentu yang lebih kecil dari rank A. Untuk tensor orde 2 (matriks), Teorema Eckart-Young-Mirsky menjelaskan bahwa masalah aproksimasi rank rendah matriks dapat diselesaikan dengan dekomposisi nilai singular (SVD). Akan tetapi, memperumum Teorema Eckart-Young-Mirsky untuk tensor adalah sebuah persoalan yang rumit. Masalah utamanya adalah, dalam kasus tensor, ada beberapa definisi rank yang berbeda. Masing-masing definisi rank dihasilkan dengan memperumum sifat-sifat tertentu dari fungsi rank matriks dan dapat menghasilkan nilai yang berbeda-beda untuk tensor yang sama; permasalahan tersebut adalah pokok bahasan skripsi ini. Skripsi ini dimulai dengan membahas konsep-konsep dasar dalam komputasi tensor. Lalu, akan dibahas mengenai tiga definisi konsep rank tensor. Untuk masing-masing definisi rank tensor, akan dipaparkan dekomposisi tensor yang berkaitan; dekomposisi-dekomposisi tensor ditujukan untuk memperumum SVD. Lalu, konsep rank dan dekomposisi tensor digabungkan dalam pembahasan masalah aproksimasi rank tensor. Pembahasan dilanjutkan dengan pembahasan hasil kali *M. Hasil kali *M dibuat untuk membentuk sebuah kerangka umum sebagai upaya menggabungkan beberapa dekomposisi tensor yang telah dibahas sebelumnya. Terakhir, dijelaskan mengenai berbagai sifat dan keunggulan teoretis kerangka hasil kali *M.

In the context of computational mathematics, tensors are often viewed as multidimensional arrays, with the number of dimensions referred to as the order of the tensor. Tensors can be used to represent various types of data, such as image data and psychometric data. One important problem in tensor computation is the low-rank approximation of tensors. For a tensor A, the low-rank approximation problem is to find the tensor B whose entries are closest to the tensor A but has a certain rank that is smaller than the rank of A. For tensors of order two (matrices), the Eckart-Young-Mirsky theorem says that the matrix low-rank approximation problem can be solved by truncating its singular value decomposition (SVD). However, generalizing the Eckart-Young-Mirsky theorem to tensors is a complicated problem. The main problem is that there are several different definitions of rank in the case of tensors. Each definition of rank is generated by generalizing certain properties of the matrix rank and can yield different values for the same tensor; that problem is the subject of this thesis. This thesis begins by discussing the basic concepts of tensor computation. Then, three definitions of the concept of rank tensor will be addressed. For each definition of rank tensor, the corresponding tensor decomposition is presented; the tensor decompositions are intended to generalize the SVD. Then, the concepts of rank and tensor decomposition are combined to discuss the rank tensor approximation problem. The discussion continues with the discussion of the product of *M. The product of *M is made to form a general framework as an attempt to combine several tensor decompositions that have been discussed previously. Finally, various properties and theoretical advantages of the *M product framework are explained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library