Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Awaludin Martin
"Penelitian ini terdiri atas dua bagian penelitian, yaitu proses produksi karbon aktif berbahan dasar batubara sub bituminus Indonesia yang berasal dari Kalimantan Timur dan Riau dan adsorpsi isotermal karbon dioksida dan metana pada karbon aktif hasil penelitian bagian pertama. Karbon aktif diproduksi di laboratorium dengan menggunakan aktivasi fisika dimana gas CO2 digunakan sebagai activating agent pada temperatur aktivasi sampai dengan 950oC. Karbon aktif yang diproduksi selanjutnya dilakukan pengujian untuk mengetahui kualitas karbon aktif berupa angka Iodine dan luas permukaan. Dari penelitian yang dilakukan didapat bahwa karbon aktif berbahan dasar batubara Kalimantan Timur lebih baik dibanding dengan karbon aktif berbahan dasar batubara Riau. Hal tersebut dikarenakan oleh perbandingan unsur oksigen dan karbon pada batubara Kalimantan Timur lebih tinggi daripada batubara Riau. Angka Iodine maksimum pada karbon aktif berbahan dasar batubara Riau adalah 589,1 ml/g, sementara karbon aktif berbahan dasar batubara Kalimantan sampai dengan 879 ml/g.
Adsorpsi isotermal karbon dioksida dan metana pada karbon aktif Kalimantan Timur dan Riau serta satu jenis karbon aktif komersial dilakukan di laboratorium Teknik Pendingin dan Pengkondisian Udara Teknik Mesin FTUI. Adsorpsi isotermal dilakukan dengan menggunakan metode volumetrik dengan variasi temperatur isotermal 27, 35, 45, dan 65oC serta tekanan sampai dengan 3,5 MPa. Data adsorpsi isotermal yang didapat adalah data kapasitas penyerapan karbon dioksida dan metana pada karbon aktif pada variasi tekanan dan temperatur isotermal yang kemudian di plot dalam grafik hubungan tekanan dan kapasitas penyerapan. Dari hasil penelitian didapat bahwa kapasitas penyerapan karbon aktif komersial lebih baik dibandingkan dengan karbon aktif Kalimantan Timur dan Riau, hal tersebut dikarenakan luas permukaan dan volume pori karbon aktif komersial lebih tinggi dibanding yang lain. Kapasitas penyerapan CO2 pada karbon aktif komersial (CB) maksimum adalah 0,349 kg/kg pada temperatur 27oC dan tekanan 3384,69 kPa, sementara untuk karbon aktif Kalimantan Timur (KT) adalah 0,227 kg/kg pada temperatur 27oC dan tekanan 3469,27 kPa dan untuk karbon aktif Riau (RU) adalah 0,115 kg/kg pada temperatur 27oC dan tekanan 3418,87 kPa. Kapasitas penyerapan CH4 pada karbon aktif CB maksimum adalah 0,0589 kg/kg pada temperatur isotermal 27oC dan tekanan 3457,2 kPa, sementara untuk karbon aktif KT adalah 0,0532 kg/kg pada temperatur 27oC dan tekanan 3495,75 kPa dan untuk karbon aktif RU adalah 0,0189 kg/kg pada temperatur 27oC dan tekanan 3439,96 kPa.
Data adsorpsi isotermal yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Dubinin-Astakhov. Dari hasil perhitungan korelasi persamaan didapat bahwa persamaan model Toth adalah persamaan model yang paling akurat, dimana nilai simpangan antara data eksperimen adsorpsi isotermal CO2 dengan korelasi persamaan model Toth adalah 3,886% (CB), 3,008% (KT) dan 2,96% (RU). Sementara untuk adsorpsi isotermal CH4 adalah 2,86% (CB), 2,817 (KT), dan 5,257% (RU). Dikarenakan persamaan model Toth adalah persamaan yang paling akurat, maka perhitungan panas adsorpsi isosterik dan adsorpsi isosterik dilakukan dengan menyelesaikan persamaan model Toth tersebut. Data panas adsorpsi dibutuhkan untuk mengetahui berapa besar panas yang dilepaskan ketika adsorben menyerap karbon dioksida dan metana, sementara data adsorpsi isosterik diperlukan untuk dapat memprediksi berapa besar tekanan yang dibutuhkan dan temperatur isotermal yang harus dikondisikan untuk menyerap gas karbon dioksida dan metana dalam jumlah yang telah diketahui.

This research is consists of two main topics, first is production of activated carbon from Indonesian sub bituminous coal as raw material. The raw material is from East of Kalimantan and Riau sub bituminous coal. And secondly is adsorption isotherms carbon dioxide and methane on activated carbon. Activated carbon was produced in laboratory with physical activation method by carbon dioxide as activating agent up to 950oC. Iodine number and surface area was used to characterize of activated carbon quality. From the research, the quality of activated carbon from East of Kalimantan sub bituminous coal is better than Riau sub bituminous coal. It caused the ratio of oxygen and carbon in from East of Kalimantan sub bituminous coal is higher than Riau sub bituminous coal. The maximum iodine number of activated carbon from Riau sub bituminous coal is 589.1 ml/g and activated carbon from East of Kalimantan sub bituminous coal is 879 ml/g.
Adsorption isotherms carbon dioxide and methane on activated carbon from East of Kalimantan and Riau sub bituminous coal and commercial activated carbon was done in Refrigeration and Air Conditioning Laboratory, Mechanical Engineering Department, Faculty of Engineering, University of Indonesia. Adsorption isotherms were done by volumetric method with variation of temperature is 27, 35, 45, and 65oC and the pressure of adsorption up to 3.5 MPa. Data of adsorption isotherm is adsorption capacity of carbon dioxide and methane on activated carbon with pressure and isotherms temperature variation. Data of adsorption capacity was plotted on pressure and adsorption capacity. From the research, adsorption capacity of commercial activated carbon is higher than Activated carbon from East of Kalimantan and Riau coal. It is caused; the surface area and pore volume of commercial activated carbon is higher than East of Kalimantan and Riau coal. The maximum adsorption capacity of CO2 on commercial activated carbon is 0.349 kg/kg at isotherm temperature 27oC and the pressure is 3384.69 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CO2 is 0.227 kg/kg at isotherm temperature 27oC and the pressure is 3469.27 kPa. For activated carbon from Riau, the maximum adsorption capacity of CO2 is 0.115 kg/kg at isotherm temperature 27oC and the pressure is 3418.87 kPa. The maximum adsorption capacity of CH4 on commercial activated carbon is 0.0589 kg/kg at isotherm temperature 27oC and the pressure is 3457.2 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CH4 is 0.0532 kg/kg at isotherm temperature 27oC and the pressure is 3495.75 kPa. For activated carbon from Riau, the maximum adsorption capacity of CH4 is 0.0189 kg/kg at isotherm temperature 27oC and the pressure is 3439.96 kPa.
Adsorption isotherms data was correlated with Langmuir, Toth, and Dubinin- Astakhov equation models. From the calculation, Toth equation model more accurate than Langmuir and Dubinin-Astakhov. The deviation between experiment data of adsorption isotherm CO2 and calculation by using Toth equation model is 3.886% for commercial activated carbon data, 3.008% for East of Kalimantan activated carbon, and 2.96% for Riau activated carbon. The deviation between experiment data of adsorption isotherm CH4 and calculation by using Toth equation model is 2.86% for commercial activated carbon data, 2.817% for East of Kalimantan activated carbon, and 5.257% for Riau activated carbon.Isosteric heat of adsorption and adsorption isostere was calculated by using Toth equation model, caused the Toth equation model more accurate than Langmuir and Dubinin-Astakhov models. Isosteric heat of adsorption is needed to know the amount of heat of adsorption released when activated carbon adsorpt the adsorbate. The adsorption isostere data is needed to predict the pressure and isotherm temperature for adsorp the amount of adsorbate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D998
UI - Disertasi Open  Universitas Indonesia Library
cover
Aries Subiantoro
"Sistem tata udara presisi adalah sistem yang mengatur lingkungan udara yang cocok untuk peralatan ICT dalam kebinet ruang Datacenter yang khusus melayani penggunaan yang sangat penting dan kritis. Untuk mencegah kerusakan pada peralatan ICT dan pada media penyimpan akibat thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, dan short circuit, sistem tata udara presisi harus dapat mengendalikan temperatur dan kelembaban didalam kabinet, serta mampu beradaptasi terhadap perubahan temperatur akibat perubahan beban panas peralatan IT.
Permasalahan yang dihadapi adalah bahwa sistem ini memiliki karakterisitik kompleks dan nonlinier yang sangat kuat yang sangat sukar dikendalikan oleh teknik kendali lanjut linier. Di dalam dissertasi ini diusulkan teknik kendali prediktif nonlinier baru yang disebut sebagai sistem kendali prediktif multi model berbasis supervisi untuk mengendalikan temperatur keluaran sistem tata udara presisi. Algoritma kendali tersusun dari tiga layer, yaitu layer optimasi kendali real-time untuk mengikuti perubahan sinyal acuan, layer adaptasi untuk menyesuaikan model PAC terhadap variasi beban panas, dan layer supervisi untuk menjamin kestabilan.
Sistem PAC memiliki rancangan struktur baru yaitu penambahan kondenser sekunder yang berfungsi sebagai reheater untuk menurunkan RH keluaran evaporator. Prinsip kerja dan siklus kompresi uap sistem PAC diilustrasikan dalam psychrometric chart dan diagram enthalpi-tekanan. Model nonlinier sistem PAC diturunkan menggunakan teori pemodelan fisik berdasarkan prinsip konservasi energi dan kesetimbangan massa, dan kemudian dilinierisasi di sekitar titik kerja untuk mengembangkan model ruang keadaan orde-8 yang cocok untuk perancangan pengendali multivariabel. Kualitas model terlinierisasi dianalisa dari aspek respons transien, sifat controllability dan observability, dan interaksi antar variabel masukan-keluaran. Sebuah model nonlinier yang disebut sebagai multi model linier diusulkan dimana matriks parameter model diestimasi oleh algoritma identifikasi N4SID menggunakan himpunan data eksperimen masukankeluaran.
Kontribusi utama dari dissertasi ini adalah multi model linier dapat diestimasi secara bertingkat dimana tiap tingkat identifikasi mempertahankan hubungan linier antar matriks parameter. Konsep model bertingkat ini juga mempermudah perancangan pengendali prediktif multi model dengan tetap mempertahankan optimasi kendali sebagai permasalahan quadratic programming. Mekanisme adaptasi pengendali prediktif dibentuk dengan memperbaharui model prediksi menggunakan algoritma N4SID rekursif.
Untuk menjamin kestabilan sistem PAC dan menghindari fenomena bursting, algoritma deteksi ketidakcukupan eksitasi sinyal masukan dan monitoring sinyal diturunkan dalam persamaan rekursif, sehingga penambahan waktu komputasi tidak signifikan. Komputasi rekursif pada layer supervisi menjadi kontribusi terakhir. Kualitas model nonlinier hasil pemodelan fisik dan identifikasi bertingkat divalidasi melalui simulasi dan uji eksperimen baik secara kualitatif maupun kuantitatif. Sebagai indikator kinerja validasi model digunakan kriteria loss function dan kriteria final prediction error.
Dari hasil uji simulasi dan eksperimen, hanya multi model linier menunjukkan kinerja model yang baik dari aspek kemampuan meniru karakteristik nonlinear sistem PAC dan nilai parameter analisa model yang baik, sehingga model ini cocok dipakai pada perancangan pengendali. Algoritma kendali yang diusulkan juga diverifikasi baik dalam kasus uji simulasi dan eksperimen, dan menunjukkan kemampuannya untuk menjejaki perubahan sinyal acuan.

Precision air conditioning (PAC) is a system that regulate air environment suitable for ICT equipments inside the cabinet of Datacenter room which serves very important and critical works. In order to overcome damage on ICT equipments and media storage due to thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, and short circuit, the PAC should be able to control the temperature and relative humidity inside the cabinet, and also able to adapt againts temperature change caused by interaction with humans, change of environment temperature, and change of heat load of ICT equipments.
The problem encountered is that the PAC shows complex and highly nonlinear dynamics that is usually very difficult to control with linear advanced control systems. In this Dissertation, a new nonlinear predictive control called a supervision-based multi model predictive control to regulate the temperature outlet of PAC is presented. The proposed control algorithm consists of three layers, they are the optimization of real-time control layer for tracking the given set points, the adaptation layer for adjusting the PAC model againts variation of heat load, and the supervision layer for guarantee the closed loop stability.
The work mechanism and vapourcompression cycle for the PAC system are illustrated using psychrometric chart and enthalpypressure diagram. A nonlinear model is derived using physical modeling theory based on the conservation of mass and energy balance principles, and then linearized about operating points for developing a 8th order state space model suited for multivariable control design. The quality of linearized model is analyzed in terms of response transient, controllability, observability, and interaction between input-output variables. A nonlinear model called multi linear model is proposed where the model parameter matrices are estimated by N4SID algorithm using a set of input-output data.
The main contribution of this dissertation is that the multi linear model can be estimated using multi-stage subspace identification algorithm, where the relationship between model parameter matrices is still maintained linear. The concept of multi level models also simplify the design of multi model predictive controller retaining control optimization as a quadratic programming problem. The adaptation mechanism is performed by updating the prediction model using recursive N4SID algorithm.
In order to guarantee system stability and to overcome bursting phenomena, a detection algorithm of less excitation signal and signals monitoring are derived in recursive forms, so that the control algorithm needs no significant additional computing power. The recursive computation in supervision layer is the last contribution for this dissertation. Quality of nonlinear model from physical modeling and system identification is validated through simulation and experimental test both qualitatively and quantitatively. Loss function and final prediction error are choosed as a performance criteria of model validation.
From the simulation and experimental results, only the multi linear model shows good modeling performance in terms of ability to mimic the nonlinear behavior of PAC system and good parameter value of model analysis. The proposed control algorithm is also verified in case of simulation and experimental test showing its ability to track the set-point change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1507
UI - Disertasi Membership  Universitas Indonesia Library
cover
Arief Surachman
"Dalam rangka upaya memenuhi target pemerintah yaitu pengembangan pembangkit listrik tenaga panas bumi PLTP pada tahun 2025 ditargetkan sebesar 7.242 MW, maka tentu saja akan diperlukan data tentang desain PLTP yang paling optimal yang dapat diterapkan pada seluruh kondisi sumber panas bumi. Dengan demikian, diperlukan panduan desain yang dibuktikan secara ilmiah untuk pembangunan PLTP. Dalam dekade terakhir ini, banyak peneliti yang menganalis atau merancang sistem energi dengan menggabungkan antara analisis energi, exergy dan thermoekonomik. Hal ini dimaksudkan dalam upaya peningkatan efisiensi serta mengurangi kerugian-kerugian yang ditimbulkan oleh ketidakefisienan sistem.
Melalui analisa yang komprehensif dengan menggabungkan analisa energi, exergy, exergoeconomics serta exergoenvironment, maka diharapkan dapat menjadi panduan desain yang paling optimum dengan mempertimbangkan segala aspek, baik aspek teknologi, ekonomi dan lingkungan yang dapat diaplikasikan untuk berbagai kondisi sumber panas bumi di Indonesia. Untuk itulah pada disertasi ini dilakukan analisa dan optimasi 3E exergy,economic,environment. Pemodelan dan optimasi sistem PLTP dilakukan menggunakan software EES dan diintegrasikan dengan MATLAB.
Dari hasil analisis 3E, dapat diketahui bahwa komponen seperti turbin dan cooling tower merupakan komponen yang menyumbang nilai exergy destruction, total cost dan exergoenvironment yang paling besar dibandingkan komponen lainnya.

In order to reach the government 39;s target of building geothermal power plant PLTP in 2025 of 7,242 MW, then it will need data about the most optimal PLTP design that can be applied to all geothermal conditions. Thus, the design required for the construction of PLTP. In the last decade, many researchers have analyzed and discussed energy systems with energy, exergy and thermoeconomic analyzes. This is necessary in an effort to increase and reduce the losses caused by system inefficiencies.
Through a comprehensive analysis with energy analysis, exergy, exergoeconomics and exergoenvironment, it is expected to be the most optimal design with good aspects, economics and environment that can be used for various geothermal conditions in Indonesia. For analysis, it was conducted 3E exergy, economy, environment analysis on this dissertation. By using EES software and integrated with MATLAB, the PLTP system can be modeled and optimized.
From the results of 3E analysis, it can be seen that components such as turbines and cooling towers are the components that contribute the largest value of total exergy destruction, total cost and exergoenvironment compared to other components.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2483
UI - Disertasi Membership  Universitas Indonesia Library
cover
Lia Putriyana
"Isu lingkungan dalam pemenuhan kebutuhan energi menjadi fokus pada penelitian ini. Pada penelitian ini, potensi energi panas bumi dikombinasikan dengan mekanisme penangkapan dan penyimpanan CO2 untuk dapat mengurangi secara signifikan emisi CO2. Pengoperasian CO2 memungkinkan pemanfaatan formasi geologi/potensi panas bumi dengan permeabilitas dan temperatur rendah, yang selama ini tidak dianggap layak secara ekonomi. Secara umum penelitian ini terbagi menjadi tiga tahap, didahului dengan menginventarisasi
potensi panas bumi temperatur rendah – sedang di Indonesia, selanjutnya dilakukan penilaian kesesuaian kondisi subsurface untuk kesesuaian sebagai CCUS dan perangkingan berdasarkan skor yang didapatkan. Keluaran dari tahap satu berupa peta indikatif yang menginformasikan lokasi potensi panas bumi temperatur rendah – sedang yang sesuai digunakan untuk aplikasi CCUS. Dari studi ini diketahui, lapangan Batubini, Sanggala, dan Mengkausar merupakan tiga lapangan panas bumi teratas yang sesuai untuk penyimpanan CO2. Selain itu, dilakukan
identifikasi potensi EBT lainnya yang ada di sekitar lokasi potensi panas bumi terpilih. Pada tahap kedua dilakukan simulasi numerik dari salah satu lokasi terpilih guna mengetahui besarnya potensi listrik yang dapat dihasilkan. Tahap ketiga, dilakukan penyusunan sistem poligenerasi untuk memanfaatkan energi panas bumi dan energi surya sebagai sumber energi yang digunakan untuk beberapa pemanfaatan, antara lain: produksi air bersih, produksi
hidrogen, penangkapan CO2, pendinginan, pembangkit listrik siklus biner dan superkritikal CO2. Analisis thermodinamika, ekonomi dan lingkungan dilakukan pada sistem poligenerasi yang diusulkan. Validasi model dari masing – masing unit desalinasi, unit produksi hidrogen,unit penangkapan CO2, unit pendingin, dan unit pembangkit dilakukan terhadap hasil percobaan yang pernah dilakukan, Selanjutnya, analisis sensitivitas dari masing – masing parameter kunci dari masing – masing unit dilakukan guna mengetahui sejauh mana perubahan parameter – prameter tersebut berpengaruh terhadap variabel tetap berupa biaya rata – rata pembangkitan
listrik atau leverage cost of electricity (LCOE), biaya rata – rata produksi hidrogen atau leverage cost of hydrogen (LCOH), biaya rata – rata produksi air bersih atau leverage cost of fresh water (LCOFW), dan biaya rata – rata penangkapan CO2 atau leverage cost of CO2 (LCOCO2). Beberapa parameter pada sistem poligenerasi yang diusulkan berpengaruh terhadap biaya rata – rata, perubahan variabel akan berpengaruh terhadap variabel tetap tersebut yang selanjutnya dilakukan optimasi multi-objektif untuk mengetahui sejauh mana perubahan variabel
berpengaruh terhadap biaya rata – rata tersebut. Penelitian ini diharapkan dapat berkontribusi untuk memberi informasi dan gambaran mengenai potensi dan prospek sistem panas bumi temperatur rendah – sedang di Indonesia, memberi peluang pengurangan emisi CO2 dan dapat mendorong pemanfaatannya guna memenuhi kebutuhan energi di suatu daerah.

Environmental Issues in Meeting Energy Needs as the Focus of This Research This research focuses on addressing environmental issues related to energy needs. It explores the potential of geothermal energy combined with carbon capture and storage (CCS) mechanisms to significantly reduce CO₂ emissions. The operation of CO₂ injection allows for the utilization of geothermal formations with low permeability and low temperature, which were previously considered economically unviable. In general, the study is divided into three stage: Stage one: Assessment of subsurface conditions for suitability with CCS applications, followed by a ranking based on scores obtained, The output of this phase is an indicative map identifying locations with low-to-moderate geothermal potential suitable for CCS applications. From the study, the Batubini, Sanggala, and Mengkausar geothermal fields were identified as the top three sites suitable for CO₂ storage. Additionally, other renewable energy potentials around the selected geothermal locations were identified. Stage Two: Numerical simulation at one of the selected locations to determine the potential electricity generation. Stage Three: Development of a polygeneration system that utilizes geothermal and solar energy for multiple applications, including Production of clean water, Hydrogen production, CO₂ capture, Cooling systems, Binary cycle and supercritical CO₂ power generation, Thermodynamic, economic, and environmental analyses were conducted on the proposed polygeneration system. The models for each unit (desalination, hydrogen production, CO₂ capture, cooling, and power generation) were validated against experimental results. A sensitivity analysis was performed on key parameters of each unit to assess the extent to which parameter changes impact fixed variables, such as: Levelized Cost of Electricity (LCOE), Levelized Cost of Hydrogen (LCOH), Levelized Cost of Fresh Water (LCOFW), Levelized Cost of CO₂ (LCOCO₂), Changes in certain parameters within the proposed polygeneration system affected the levelized costs. A multi-objective optimization was carried out to determine how variable changes impact these costs. This study aims to contribute to insights into the potential and prospects of low-to-moderate geothermal systems in Indonesia, offering opportunities for CO₂ emission reduction and promoting their utilization to meet regional energy needs."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library