Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159 dokumen yang sesuai dengan query
cover
Ichsan
"Metana dan karbon dioksida yang terkandung dalam cadangnn gas alam di Indonesia, memiliki dampak terhadap permasalahan lingkungan global seperti efek rumah kaca. Salah satu cara yang cukup potensial untuk memanfaatkan gas ini adalah dengan mengkonversikan gas metana dan karbon dioksida menjadi gas sintesis (CO dan H2), yang merupakan bahan baku industri petrokimia. Cara ini dikenal dengan reaksi reformasi CO2.
Reaksi reformasi CO2 adalah reaksi endotermis, dan katalis yang umum digunakan adalah nikel (Ni), karena cukup aktif dan selektif serta ekonomis. Permasalahan utama yang dihadapi adalah temperatur reaksi yang tinggi dan terbentuknya deposit karbon. Karena itu penting dilakukan pengembangan penelitian katalis untuk reaksi reformasi CO2, sehingga nantinya akan diperoleh suatu katalis yang mempunyai kinerja yang bagus, bereaksi dengan temperatur yang rendah, dan meminimumkan terbentuknya deposit karbon.
Pada makalah ini penulis ingin mengetengahkan hasil penelitian katalis yang berpenyangga bentonit yang berasal dari Leuwiliang-Jawa Barat. Inti aktif yang digunakan adalah nikel yang didapat dari pengenceran Ni(NO3)2.6H2O. Ada 5 buah sampel yang telah diteliti (yaitu : Bentonit Murni, Bentonit Aktivasi Asam, Bentonit Aktivasi Basa, Katalis Asam-impregnasi Ni pada Bentonit Aktivasi Asam, dan Katalis Basa-impregnasi Ni pada Bentonit Aktivasi Basa).
Dari hasil analisa BET diperoleh bahwa Katalis Basa memiliki luas permukaan paling besar dibanding sampel uji lainnya, yaitu dengan luas 34.15 m²/g. Sedangkan luas permukaan untuk sampel Bentonit Murni adalah 24,28 m²/g, untuk Bentonit Aktivasi Asam adalah 33,08 m²/g, untuk Bentonit Aktivasi Basa adalah 6,871 m²/g, dan untuk Katalis Asam adalah 30,12 m²/g.
Hasil analisa FTIR menunjukkan bahwa Katalis Basa memiliki spektrum Al2O3 pada daerah serapan antara 800-400 cm-1. Pada Katalis Asam tidak terdapat spektrum tersebut, yang menunjukkan tidak adanya ikatan Al-O pada katalis. Ikatan Al-O ini menyebabkan bentonit memiliki struktur oktohendral, sehingga struktur molekul dari Katalis Basa akan menjadi lebih kokoh.
Hasil analisa XRD menunjukkan adanya indikasi mineral gypsum, aluminium phospat, alpha quartz, rutile, dan aluminium titanium pada Katalis Asam. Pada Katalis Basa terdapat indikasi mineral alpha quartz, anorthite, lime, dan besi. Mineral-mineral ini merupakan mineral penyusun dari sampel-sampel katalis.
Dan dari hasil analisa AAS memperlihatkan bahwa Katalis Basa memiliki prosentase loading aktual inti aktif Ni paling besar, yaitu sebesar 7.948 % hampir mendekati prosentase loading teoritis (10%), Sedangkan Katalis Asam memiliki prosentase loading aktual inti aktif Ni yang jauh lebih kecil, yaitu sebesar 0,009%.
Setelah pengujian aktivitas katalis, ternyata Katalis Basa jauh lebih aktif dibandingkan dengan Katalis Asam. Secara umum konversi Katalis Basa jauh lebih tinggi dari Katalis Asam, kecuali untuk temperatur 600ºC. Dimana pada terperatur tersebut konversi CH4 dari Katalis Basa adalah 63.2%, sedangkan untuk Katalis Asam adalah 81,1%. Adapun konversi CO2-nya adalah 37.6% untuk Katalis Basa, dan 71,8% untuk Katalis Asam, Selektivitas, yield, dan rasio H2/CO pada setiap temperatur dari Katalis Basa juga terlihat lebih tinggi dari Katalis Asam."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49238
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Rianty Fitri A.
"Bioremediasi merupakan teknologi yang memanfaatkan mikroorganisme untuk memulihkan ekosistem yang tercemar. Teknologi ini mengaplikasikan proses biologis mikroorganisme dalam rnendegradasi senyawa polutan di lingkungan, sehingga metode yang dilakukan disebut biodegradasi. Benzena merupakan salah satu senyawa hidrokarbon monoaromatik bersifat toksik yang banyak mencemari lingkungan dan umumnya sulit terdegradasi. Oleh karena itu dalam penelitian ini dilakukan uji coba proses degradasi benzena dengan menggunakan bakteri Pseudomonas aentginosa. Penelitian ini merupakan bagian dari rangkaian penelltian Bioremediasi yang dilakukan di Departernen Teknik Gas dan Petrokimia.
Proses degradasi benzena dilakukan pada temperatur ruang dan kecepatan pengocokan sebesar 20 rpm serta dengan jumlah inokulum awal bakteri sebesar I 199.1 CFU/ml. Medium yang digunakan adalah medium cair l.ockhead and Chase (LC). Variabel yang divariasikan adalah konsentrasi awal benzena yaitu pada konsentrasi 50, 100, 200, 500 dan 1000 ppm. Proses degradasi dilakukan selama 216 jam.
Secara umum hasil yang diperoleh dalam penelitian ini menunjukkan bahwa benzena hingga konsenstrasi 1000 ppm masih dapat didegradasi oleh bakteri Pseudomonas aeruginosa. Konsentrasi benzena 200 ppm menunjukkan airtivitas bakteri tertinggi dalam mendegradasi benzena. Pertumbuhan bakteri Pseudomonas aeruginosa cenderung lebih lambat pada konsentrasi benena yang lebih tinggi dimana ditunjukkan dengan laju pertumbuhan optimum bakteri yang semakin rendah seiring dengan meningkatnya konsentrasi benzena."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49502
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risma
"Bioremediasi merupakan bagian dari bioteknologi lingjcungan yang memaufaatkan proses alami biodegradasi dengan menggunakan aktivitas mikroba yang dapat memulihkan lahan tanah, air, dan sedimen dad kontaminasi senyawa organik. Toluena merupakan salah satu hidrokarbon monoaromatik yang mencemari lingkungan,berSifatt0kSik dan sukar terdegradasi. Oleh karena itu pada penelitian ini dilakukan uji proses biodegradasi dengan menggunakan bakteri Pseudomonas aeruginosa. Penelitian ini merupakan bagian dari rangkaian kegiatan penelitian yang dilakukan oleh laboratoriurn bioproses Departemen Teknik Gas dan Petrokimia.
Proses degradasi toluena dilakukan pada kondisi temperatur tetap (29°C) dan kecepatan pengocokan sebesar 20 rpm. Medium yang digunakan adalah medium cair Locklzead and Chase (LC) dengan volume dan komposisi tetap. Variabel yang divariasikan adalah konscntrasi awal toluena yaitu pada 50 ppm, |00 ppm, 200 ppm, 500 ppm, 1000 ppm. Proses degradasi dilakukan selama 216 jam.
Hasil yang diperoleh dari penelitian ini menunjukkan bahwa pada rentang konsentrasi toluena hingga 1000 ppm masih mampu didegradasi oleh bakteri Pseudomonas aeruginosa. Keta.ha.na.n terbaik bakteri Pseudomonas aeruginosa dalam rnendegradasi toluena pada kondisi tersebut adalah pada konsenlrasi 1000 ppm yang memiliki persentase degradasi lebih besar dari konsentrasi lainnya."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49462
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yunita Fenjery
"Minyak sawit yang diperoleh dari CPO (Crude Palm Oil) adalah minyak nabati yang memiliki potensi untuk dijadikan minyak lumas karena secara alami minyak nabati memiliki gugus fungsi yang dapat menempel pada permukaan dan berfungsi mencegah kontak langsung, melindungi permukaan, mengurangi keausan dan friksi antara dua permukaan logam yang saling bergerak. Lebihjauh lagi, minyak sawit ini memiliki potensi untuk dijadikan pelumas foodgrade karena senyawa-senyawa yang terkandung di dalamnya tidak beracun (karena berasal dari alam). Namun, pemakaian minyak nabati sebagai pelumas untuk mesin-mesin modern tidak bisa dilakukan karena mudah terbentuk resin dan deposit yang akan menyebabkan penyumbatan. Resin dan deposit ini terbentuk karena minyak nabati mempunyai banyak ikatan rangkap karbon yang mudah teroksidasi dalam struktur molekulnya. Pada penelitian ini, minyak sawit akan diolah melalui tahapan proses kimia menjadi senyawa yang memiliki ketahanan oksidasi lebih baik sehingga cocok dipakai sebagai bahan pelumas. Minyak sawit ditransesterifikasi menggunakan metanol dan katalis NaOH menjadi POME (Palm Oil Methyl Ester). Kemudian dilakukan proses epoksidasi untuk menghilangkan ikatan C=C pada yang terdapat pada POME menjadi gugus oksirana. Setelah itu gugus oksirana ini disubstitusi dengan gliserol dan monoalkohol dengan menggunakan katalis heterogen H-zeolit. Tujuan penggunaan katalis heterogen adalah agar mudah dipisahkan dari produk yang dihasilkan sehingga tidak berbahaya dan produknya dapat digunakan sebagai pelumas foodgrade. Berdasarkan hasil penelitian, diketahui bahwa produk dari reaksi epoksidasi (EPOME) mempunyai ketahanan oksidasi yang lebih baik jika dibandingkan dengan minyak sawit dan POME. Reaksi pembukaan cincin EPOME menghasilkan EPOME gliserol dan EPOME monoalkohol yang merupakan hidrokarbon jenuh multi gugus fungsi (ester, eter, dan hidroksida) dan dapat melindungi permukaan logam dengan ketahanan oksidasi yang lebih baik. Hasil yang diperoleh menunjukkan bahwa EPOME heksadekanol sangat bagus untuk dijadikan minyak lumas dasar karena ketahanan oksidasinya paling baik Jika dibandingkan dengan EPOME gliserol, POME, minyak sawit, dan HVI 160 S."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Noris Rahmatullah
"Nata de coco adalah produk komersial yang terbuat dari air kelapa. Produk ini sangat digemari karena bermanfaat untuk memperlancar pencernaan dan cocok untuk menu diet. Hal ini disebabkan oleh kandungan seratnya yang tinggi. Secara kimiawi, serat yang terkandung di dalam nata de coco adalah selulosa. Suksesnya nata de coco dipasaran membuat banyak peneliti untuk mengembangkan makanan berserat ini, salah satu pengembangannya adalah nata de pina. Nata de pina menggunakan bahan dasar dari sari buah nenas. Selain menggunakan sari buah nenas, pembuatan nata de pina menggunakan beberapa bahan lainnya seperti gula, amonium sulfat, kalium hidrogen fosfat, natrium karbonat dan bakteri Acetobacter xyliium. Penelitian yang dilakukan adalah pengaruh ammonium sulfat dalam produksi nata de pina. Variasi yang digunakan adalah ammonium sulfat sebesar 0,1; 0,2; 0,3; 0,4; 0,5 gram. Selain ammonium sulfat, digunakan juga variasi buah nenas sebesar 10, 20, 30 ml (ditambahkan air hingga mencapai 1000 ml). Pada penelitian ini didapatkan bahwa variasi sari buah nenas tidak menghasilkan lapisan nata de pina. Lapisan nata de pina hanya dihasilkan dari sari buah nenas 20 dan 30 ml. Sedangkan untuk variasi ammonium sulfat didapatkan produksi maksimum ada pada variasi ammonium sulfat 0,5 gram yang jumlah sari buah nenasnya 20 ml dan produksi nata de pina minimum ada pada variasi amonium sulfat 0,1 gram pada sari buah nenas 30ml. Dengan demikian dapat disimpulkan bahwa penambahan amonium sulfat menaikkan ketebalan lapisan nata de pina."
Fakultas Teknik Universitas Indonesia, 2006
S49561
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nova Taufik Ardianto
"Perkembangan sektor transportasi di Indonesia sangat pesat seiring dengan perkembangan teknologi dunia. Oleh karena itu, kebutuhan bahan bakar minyak khususnya bensin terus meningkat di Indonesia sehingga cadangan minyak bumi yang menjadi bahan utama untuk membuat bensin saat ini diekplorasi secara luas yang menyebabkan terjadinya krisis bahan bakar. Untuk mengatasi hal ini diperlukan sumber alternatif untuk menghasilkan bahan bakar minyak tersebut. Salah satu alternatif untuk mengatasi hal ini adalah pembuatan bensin senyawa turunan dari biomassa yaitu minyak kelapa sawit.
Penelitian ini bermaksud untuk mengembangkan proses perengkahan katalitik untuk memproduksi senyawa hidrokarbon setaraf gasoline dari minyak kelapa sawit dengan mengunakan ZSM-5/Alumina. Reaksi akan dilaksanakan dalam suatu fixed bed reactor yang beroperasi pada tekanan atmosferik. Temperatur reaksi akan dilakukan dari 375 °C sampai dengan 450°C dengan laju alir 10 ml/min.
Penambahan ABE (Aseton, Butanol, dan Etanol) dimaksudkan untuk mengatasi kereaktifan gugus ikatan ester molekul trigliserida agar terjadinya reaksi polycondensation yang mengakibatkan molekul minyak menjadi bertambah besar dapat dihindari dan sebagai menjadi sumber alkil yang akan meningkatkan kualitas produk yang dihasilkan. Produk yang dihasilkan dari proses perengkahan katalitik minyak sawit adalah berupa produk gas, produk cair dan air juga terdapat kokas yang menempel pada katalis. Yield senyawa hidrokarbon setaraf fraksi gasoline yang dihasilkan 89.7641 %.
Tanpa memperhitungkan aspek ekonomis, dapat diketahui suatu kondisi optimum dari pembuatan hidrokarbon setaraf fraksi gasoline, yaitu umpan yang digunakan dengan campuran minyak sawit-ABE dengan perbandingan massa 1 : 1 dan suhu optimal yang didapat adalah 375°C dengan analisa adsorbsi-desorbsi ammonia pada katalis. Keasaman katalis campuran meningkat cukup besar dibandingkan dengan keasaman katalis murni. Reaksi konversi minyak sawit-ABE menjadi gasoline memerlukan keasaman sebagai pemicu reaksi alkilasi dan reaksi perengkahan.

The development of transportation sector in Indonesia is growing very fast along with technolgy development in the world. Because of that, the need for oil fuel especially gasoline keeps growing in Indonesia with the result that crude oil reserves as a main resource to make gasoline is now being explored widely causing the fuel crisis. In order to handle this problem, alternative resorces is needed to produce that oil resources. One of the alternatives to handle this problem is making gasoline derivative compund from biomass, which is crude palm oil.
This research is meant to improve catalytic cracking process to produce hydrocarbon compounds equal with gasoline from crude palm oil using ZSM-5/ alumina. Reaction will be done in fixed bed reactor which operates at atmospheric pressure. Reaction temperature will be done from 375°C until 450°C with volumetric velocity 10 ml/ min.
The addition of ABE (Acetone, Butanol, and Ethanol) is meant to handle ester functional group reactivity triglyceryde molecule for occurance polycondensation reaction which causing oil molecule get larger can be avoided and be the alkyl resource which improving product quality produced. Product that produced from crude palm oil catalytic cracking process forms gas, liquid product and water and also contains coke which adheres to catalyst. The yield of hydrocarbon compound equal to gasoline fraction produced is 89.7641%.
Regardless calculation economical aspect, it can be known an optimum condition of the making hydrocarbon equal gasoline fraction, is the feed used with mixture crude palm oil- ABE using with mass comparison 1 : 1 and optimum temperature 375°C with ammonia adsorption- desorption analysis in catalyst. Acidic characteristic of catalyst mixture increases high enough compared with that of pure catalyst. The conversion reaction crude palm oil- ABE producing gasoline needs acidic characteristic as a trigger of alkylation reaction and catalytic reaction.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49549
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gunawan
"Proses pengolahan yang umum dilakukan untuk pengolahan limbah cair industri tekstil adalah koagulasi. Namun proses koagulasi jika tidak dilakukan dengan dosis yang tepat dapat menghasilkan sludge yang membutuhkan pengolahan lebih lanjut lagi yang tentunya meningkatkan biaya operasi. Ozon sebagai oksidator kuat dapat mengoksidasi senyawa-senyawa organik, meningkatkan derajat biodegrability dan menurunkan toxicity pada air limbah. Selain itu proses ozonasi dapat membantu mengurangi dosis penggunaan koagulan sehingga dapat mengurangi sludge yang terbentuk dari proses koagulasi.
Oleh karena itu perlu diketahui dosis koagulan dan lamanya waktu ozonasi yang optimum untuk mereduksi COD dan menurunkan berat sludge. Penelitian ini menguji pengaruh ozonasi terhadap peningkatan kinerja koagulasi dari suatu limbah cair industri tekstil. Pertama-tama limbah hanya dikoagulasi dengan variasi jenis koagulan inorganik dan organik. Dosis koagulan optimum ditentukan melalui metode jar-test. Proses berikutnya limbah diozonasi kemudian dilanjutkan koagulasi sambil dilakukan variasi waktu ozonasi untuk mengetahui pengaruh ozon terhadap penyisihan COD, dosis koagulan, perubahan berat sludge.
Hasil penelitian menunjukan bahwa koagulasi dengan koagulan organik (N8100) memberikan % reduksi COD yang lebih besar dan dosis yang lebih sedikit dibandingkan dengan koagulan N3276. Dosis optimum yang didapat adalah ketika menggunakan koagulan N8100 sebanyak 40 mg/L mampu mereduksi COD sebesar 62,37%. Ozonasi selama 30 menit, menurunkan penggunaan dosis koagulan N8100 menjadi 30 mg/L, mampu mereduksi COD sebesar 61,68% dan menurunkan berat sludge sebesar 16,87%. Proses variasi waktu preozonasi tidak berpengaruh secara signifikan dalam hal mereduksi COD pada penelitian ini.

Coagulation is the common process in the textile wastewater treatment. Nevertheless, if it was done with improper coagulant dosage it would produce sludge that must be treated subsequently which will raise the operational cost. Ozone as the strong oxidator is able to oxidize the organic matters, increase the biodegrability, and reduce the toxicity of wastewater. Moreover, ozonation can reduce the coagulant consumption and the sludge which is produced at the coagulation process.
Therefore, it is significant to find out the optimum coagulant dosage and duration of ozonation process for COD removal and sludge reduction. This research test the effect of ozone to the coagulation process at textile wastewater treatment. First, the textile waste water was coagulated with varying kind and dosage of coagulant which were inorganic and organic coagulant. Jartest is used to determine the optimum dosage of coagulant. At the next step, textile wastewater was ozonated with varying duration of ozonation. After the ozonation process, it was continued with coagulation process. The changing of COD and sludge mass is measured to know the effect of preozonation process to the coagulation process.
As the result, organic coagulant (N8100) at little dosage gives higher COD removal than inorganic coagulant (N3276). The optimum dosage of coagulant is reached at 40 mg/L with organic coagulant, and it gives 62,37 % of COD removal. Ozonation in 30 minute reduces the consumption of organic coagulant to 30 mg/L, gives 61,68% of COD removal, and reduces 16,87 % of the sludge mass. The variation of preozonation duration doesn't significantly effect the COD removal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49786
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vasko Ruseimy
"Penggunaan bahan bakar fosil oleh manusia menimbulkan ancaman serius, yaitu jaminan ketersediaan bahan bakar fosil untuk beberapa dekade mendatang dan polusi akibat emisi pembakaran bahan bakar fosil ke lingkungan. Kesadaran terhadap ancaman tersebut telah mengintensifkan berbagai riset yang bertujuan menghasilkan sumber-sumber energi alternatif yang berkelanjutan dan lebih ramah lingkungan. Salah satu energi alternatif yang relatif murah ditinjau aspek produksinya dan relatif ramah lingkungan adalah pengembangan bioetanol dari limbah kertas yang banyak mengandung lignoselulosa. Penelitian pembuatan etanol dari kertas intinya adalah dengan proses Sakarafikasi dan Fermentasi Serentak (SSF). Enzim selulase dan yeast Saccharomyces cerevisiae digunakan untuk hidrolisis dan fermentasi dalam proses SSF tersebut. PH yang digunakan adalah pH 5 karena pada penelitian konversi etanol sebelumnya pH 5 adalah pH optimum. Proses SSF dilakukan dengan waktu inkubasi selama 6, 12, 24, 36, 48, 72, 96 jam. Aktifitas yang digunakan adalah 0,2; 0,3; dan 0,5gr. Sebelum dilakukan proses hidrolisis dan fermentasi perlu adanya proses Pada penelitian ini jenis limbah kertas yang diuji adalah hanya limbah kertas HVS bertinta, HVS kosong dan kertas koran. Penelitian konversi limbah kertas menjadi etanol dengan dengan menggunakan enzim selulase yang akan dilakukan diharapkan mampu membantu riset-riset selanjutnya dan dikembangkan ke arah komersial untuk mendukung konservasi energi dan penggunaan energi alternatif bioetanol sebagai pensubstitusi minyak bumi yang ketersediaannya mulai terbatas, serta diharapkan limbah-limbah khususnya limbah kertas yang menjadi permasalahan bagi beberapa Negara dapat tertangani dengan baik. Hasil penelitian menunjukkan bahwa etanol tidak dapat dihasilkan tanpa enzim selulase. Pada kertas HVS kosong kandungan selulosanya adalah sekitar 60,5 %, pada HVS bertinta kandungan selulosanya adalah sekitar 58,3 %, dan pada kertas koran kandungan selulosanya sekitar 49,1%. Pada kertas HVS bertinta, HVS kosong dan kertas koran diperoleh konsentrasi etanol tertinggi berturut-turut 1238,9 ppm, 669 ppm, 1428 ppm.

The use of fossil fuel by humans threatens serious problems for the future such as the availability of fossil fuel for further decades and pollution to the environment by emissions from the burning of fossil fuel. Awareness of these problems has increased the intensity of research to produce an alternative energy resource that is both sustainable and environmentally friendly. One example of a sustainable alternative energy resource that is relatively cheap and environmentally friendly is the development of bio-ethanol from waste paper that contains large amounts of lignocelluloses. The point of this research deals with the production of ethanol from paper using the simultaneous process of saccharification and fermentation (SSF.) The Cellulose enzyme and Saccharomyces cerevisiae were used to hydrolyse and ferment during the SSF process. The pH level used was pH 5 because previous research on ethanol conversion had shown that pH 5 is the optimum level. The SSF process was done with an incubation period of 6, 12, 24, 36, 48, 72, and 96 hours. The activity used was 0.2, 0.3, and 0.5gr. Before the hydrolyse and fermenting processes are done we need another process (''') For this research the type of waste paper tested was HVS paper with ink, blank HVS paper and newspaper. Research about converting waste paper to ethanol using the cellulose enzyme will hopefully be used to help future research and commercial development to support energy conservation and the use of the alternative bio-ethanol as a substitute for a limited supply of oil. Also we hope that garbage specifically waste paper which has become a problem for so many countries can be handled in a positive way. The results of this research show that blank HVS paper's cellulose content is around 60.5%, HVS paper with ink has a cellulose content of 58.3% and with newspapers the content is around 49.1%. In regards to blank HVS paper, HVS paper with ink, and newspaper, the highest ethanol concentration in succession is 1238.9ppm, 669 ppm, and 1428 ppm."
Depok: Fakultas Teknik Universitas Indonesia;, 2008
S52224
UI - Skripsi Open  Universitas Indonesia Library
cover
Alief Nasrullah Pramana
"Pada penelitian ini dilakukan percobaan mengenai pengaruh suhu dan tekanan tangki destilasi terhadap kinerja permeasi uap dengan membran NaA-Ze dalam pemurnian larutan etanol-air. Pada variabel suhu, konsentrasi rententat tertinggi dan konsentrasi permeat terendah terjadi pada suhu 130oC dengan nilai masing - masing 62% dan 5%. Volume rententat dan permeat tertinggi terjadi pada suhu 130oC dengan nilai masing - masing 202mL dan 679mL. Sedangkan pada variabel tekanan tangki destilasi, konsentrasi rententat tertinggi dan konsentrasi permeat terendah terjadi pada tekanan 1½ bar dengan nilai masing - masing 66% dan 3%, Volume rententat dan permeat tertinggi terjadi pada tekanan 1½ bar dengan nilai masing - masing 180mL dan 1062mL. Untuk variabel suhu, fluks tertinggi diperoleh di suhu 130oC dengan nilai 0,0011 kg/m2.menit dan selektivitas tertinggi diperoleh sebesar 1,066. Sedangkan untuk variabel tekanan tangki destilasi, fluks tertinggi diperoleh di tekanan 1½ bar dengan nilai 0,0016 kg/m2.menit dan selektivitas tertinggi diperoleh sebesar 1,089.

In this study conducted experiments on the effect of temperature and pressure on the performance of the distillation tank with a vapor permeation membrane purification NAA-Ze in ethanol-water solution. At temperatures variables, the highest rententat concentration and the lowest permeat concentration occured at 130oC with value 62% and 5%. The highest rententat and permeat volume occurred at 130o with value 202mL and 679mL. While at the variable distillation tank pressure, the highest rententat concentration and the lowest permeat concentration occured at 1½ bars with value 66% and 3%. The highest rententat and permeat volume occured at 1½ bar with value 180ml and 1062mL. For variable temperature, highest flux obtained at 130oC with value 0,0011 kg/m2.min and the highest selectivity is obtained at 1,066. While at the variable distillation tank pressure, the highest flux is obtained at 1½ bar with value 0,0016 kg/m2.min and the highest selectivity is obtained at 1,089."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47656
UI - Skripsi Membership  Universitas Indonesia Library
cover
Banu Nursanni
"Bioetanol dapat dimanfaatkan untuk bahan bakar nabati (BBN) dan keperluan industri. Sebagai BBN, konsentrasi bioetanol yang digunakan harus tinggi yaitu ≥ 99,5%. Konsentrasi etanol yang dihasilkan pada fermentasi hanya 8 - 12% sehingga diperlukan proses pemisahan etanol dengan air. Pemisahan dengan distilasi konvensional hanya menghasilkan etanol dengan konsentrasi 95,6%. Sehingga dibutuhkan proses pemurnian untuk mendapatkan etanol absolut. Metode pemurnian yang dipilih pada penelitian ini adalah permeasi uap. Kondisi operasi yang divariasikan adalah konsentrasi umpan (20, 30, 40, 70, 90%) dan suhu umpan (90, 100, dan 110°C, pada konsentrasi umpan 20%). Kinerja membran yang dianalisa adalah selektivitas dan fluks massa permeat.
Hasil penelitian menunjukkan bahwa variasi 70% (suhu indikator = 100°C) memiliki kinerja membran yang lebih baik dibandingkan variasi lainnya. Konsentrasi etanol pada retentat, selektivitas, dan fluks massa permeat pada variasi 70% yaitu 94%, 1,2381 dan 0,0096 kg/m2.mnt. Semakin tinggi konsentrasi dan suhu umpan mengakibatkan selektivitas semakin tinggi dan fluks massa permeat semakin rendah. Pada variasi suhu umpan 110°C tidak mengalami pemisahan dan nilai fluks massa permeat mengalami penurunan drastis.

Bioethanol can be used for biofuels (BBN) and industrial use. As a biofuel, ethanol concentration used should be as high as ≥ 99.5%. Concentration of ethanol produced in fermentation only 8-12% that is needed to process the ethanol-water separation. Separation by conventional distillation to produce ethanol with a concentration only 95.6%. So that the purification process is needed to get absolute ethanol. Purification method chosen in this study is the vapor permeation. Operating conditions be variated are feed concentrations (20, 30, 40, 70, 90%) and feed temperature (90, 100, and 110°C, the feed concentration of 20%). The performance of membrane being analyzed is selectivity and permeate mass flux.
The results showed that the variation of 70% (temperature of indicator = 100°C) membrane has a better performance than the other variation. The concentration of ethanol in the retentate, selectivity, and permeate mass flux variations at 70% is 94%, 1.2381 and 0.0096 kg/m2.mnt. The higher the concentration and temperature of the feed resulted in higher selectivity and lower permeate mass flux. At temperature of the feed variations 110°C is not had separation and permeate mass flux values decreased drastically.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52561
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>