Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 89 dokumen yang sesuai dengan query
cover
Afita Putri Lestari
"Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah.
Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.

Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process.
In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40544
UI - Skripsi Open  Universitas Indonesia Library
cover
Nurul Hikmah
"Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS."
2008
S40478
UI - Skripsi Open  Universitas Indonesia Library
cover
Mia Rizkinia
"Kegiatan penangkapan ikan di laut memerlukan aplikasi teknologi yang memberikan informasi pendukung yang menyeluruh, mencakup wilayah yang luas dan dalam waktu yang cepat untuk efisiensi dan efektivitas penangkapan ikan. Hasil scan satelit NOAA/AVHRR-APT dapat dimanfaatkan untuk keperluan ini dengan melakukan pengolahan datanya terlebih dahulu. Penelitian ini menggunakan data mentah dari transmisi analog tipe Automatic Picture Transmission (APT) satelit NOAA/AVHRR yang di-decode menjadi digital dengan software WxtoImg. Pengolahan citra dilakukan menggunakan software perangkat lunak komputasi matematis dengan masukan berupa data level 2.
Pengolahan data level 0 menjadi data level 2 ini dilakukan pada WxtoImg. Untuk membuat peta isotherm permukaan laut dan menetukan letak geografis daerah potensi ikan dibutuhkan persamaan yang menghubungkan antara suhu dengan piksel citra. Karena itu, dengan WxtoImg data di- enhancement menjadi citra yang dapat diolah dengan perangkat lunak komputasi matematis dengan persamaan yang menghubungkan antara suhu dan piksel citra. Enhancement bisa dilakukan secara otomatis dengan fasilitas enhancement sea surface temperature (SST) pada WxtoImg dengan acuan hubungan piksel dan suhu dari enhancement curve WxtoImg. Hasil enhancement berupa suhu permukaan laut akan dianalisis keunggulan dan kelemahannya jika dibandingkan dengan menggunakan citra hasil pada utilitas contrast enhance channel B only, yang dalam hal ini menggunakan kanal 4 saja. Dari penggunaan dua jenis data yang berbeda ini, juga bisa diperoleh letak geografis daerah perbedaan suhu permukaan laut dengan algoritma yang dikembangkan.

In order to increase the productivity of fish cultivation, a comprehensive information on fishery area is very vital. Using NOAA/AVHRR-APT, remote sensing satellite data could be converted into the Sea Surface Temperature (SST) could be one of the most effective solution to help the fishermen. In this research, the Automatic Picture Transmission (APT) data broadcasted from the satellite was decoded to level-2 digital imagery using WxtoImg software. To convert this image into the SST profile, image processing technique was implemented.
The result is the SST isotherm map and the geographical location of fishery potential area which is derived from the differences of temperature area. A mathematical correlation function between the pixel values and the SST was derived from the enhancement curve used in the software. The SST as the enhancement output will be analyzed and compared to the result of contrast enhancement of channel 4 only. Using these two variations of data, geographical location of different SST area could be obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40476
UI - Skripsi Open  Universitas Indonesia Library
cover
Gilang Andika
"Informasi keadaan cuaca di laut lepas merupakan hal penting yang menentukan keselamatan para nelayan dalam eksploitasi sumber daya kelautan. Dan dalam hal ini, awan merupakan parameter utama untuk menentukan kadar kestabilan di atmosfer. Langit yang bebas awan menandakan kondisi atmosfer Bumi yang cenderung stabil sedangkan keadaan langit mendung dengan bentangan awan yang cukup luas menandakan ketidakstabilan atmosfer. Melalui citra sensor satelite penginderaan jauh NOAA/AVHRR berupa sinyal APT, keadaan cuaca melalui pendeteksian dan pengklasifikasian tutupan awan dapat dilakukan.
Dalam skripsi ini, pengklasifikasian tutupan awan terbatas pada awan jenis cirrus, stratocumulus, dan cumulonimbus. Adanya awan cumulonimbus dengan bentangan awan yang cukup luas pada suatu daerah dapat diasumsikan sebagai keadaan cuaca yang buruk. Sehingga sebagai peringatan bahwa daerah tersebut mempunyai kecenderungan hujan lebat. Awan stratocumulus menandakan daerah tersebut cenderung hujan gerimis. Namun, sering kali awan ini merupakan tanda bahwa cuaca yang lebih buruk akan datang. Awan cirrus tidak membawa hujan, namun jika banyak terdapat awan cirrus di atmosfer merupakan tanda bahwa 24 jam ke depan akan terjadi perubahan cuaca.
Data yang digunakan dalam skripsi ini adalah data level 2 APT yang diterima oleh sistem penerima radio VHF dan diolah menggunakan perangkat lunak WxtoImg. Awan dideteksi menggunakan persamaan pendekatan regresi temperatur terhadap nilai kecerahan pixel. Persamaan diperoleh dengan mengambil titik-titik sampel pada data citra APT kanal 4. Setelah dipisahkan dari daratan dan lautan, awan diklasifikasikan berdasarkan tingkat kecerahan albedo yang dihitung dari data APT kanal 2.

Weather reports are one of the key factors to ensure the fishermen's safety during their activities in the sea. Cloud is a potential weather element and cloud coverage is the main parameter in determining the degree of stability of the atmosphere. A cloudless sky, for example, may suggest that the Earth's atmosphere is in a stable condition, while the massive grey clouds in the sky signifies the unstability of the atmosphere. Using the remote sensing satellite NOAA/AVHRR data extracted from the APT signal, the weather reports could be produced, while cloud cover classification could also be performed.
In this research, cloud cover is classified as one of the following types: cirrus, stratocumulus and cumulonimbus. The cumulonimbus clouds with a massive horizontal stretch in a particular area can be seen as a sign of bad weather. This observation may lead to a further conclusion that heavy rains will fall. On the other hand, the appearance of stratocumulus clouds indicates the sign of drizzle. The cirrus clouds, however, do not bring any rain droplets. Nevertheless, it is highly predicted that there will be a significant weather change in the next 24 hours.
The cloud data is extracted from the NOAA/AVHRR APT signal which is processed into level 2 data using WxtoImg. The raw data in the form of analog signal was received using a VHF receiver system. The cloud covers are then achieved using a regressive approximation equation which converted the pixel intensity into temperature. Equations are derived by taking sample points in the channel 4 image. Clouds are distinguished into those from lands and sea, and are classified based on the albedo in the channel 2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40485
UI - Skripsi Open  Universitas Indonesia Library
cover
Dwi Putri P.
"Komunikasi bergerak adalah teknologi telekomunikasi yang banyak memberikan kemudahan kepada penggunanya dalam berkomunikasi. Perencanaan dalam penempatan Base Transceiver Station (BTS) harus direncanakan sebaik mungkin untuk memperkecil kemungkinan terdapatnya daerah lubang (blank-spot) pada daerah dimana BTS akan ditempatkan.
Pendeteksian daerah lubang menggunakan komputer dapat mempermudah proses perencanaan penempatan BTS di daerah pegunungan. Di dalam penelitian ini, dirancang perangkat lunak untuk mendeteksi daerah lubang sesuai dengan spesifikasi BTS. Selain itu simulasi letak ponsel terhadap BTS juga dapat diperhitungkan agar diketahui apakah ponsel tersebut dapat mengirimkan sinyalnya kepada BTS.
Pendeteksian daerah lubang dilakukan dengan menghitung besarnya kuat medan yang diterima oleh penerima dengan menggunakan metode UTD (Uniform Theory of Diffraction). Hasil perhitungan ditampilkan dalam peta dua dimensi daerah pegunungan dengan kawasan berwarna hitam sebagai indikasi daerah lubang dan warna putih sebagai daerah jangkauan komunikasi. Faktor yang memengaruhi luas daerah lubang adalah: nilai Effective Isotropic Radiated Power-EIRP berbanding terbalik dengan jumlah daerah lubang, sensitivitas antena berbanding lurus dengan jumlah daerah lubang. Sementara ketinggian antena BTS tidak terlalu signifikan pengaruhnya terhadap jumlah daerah lubang yang muncul.

Mobile communication is a technology that makes communication easier. Network planning must be performed carefully to reduce the probability of blank spot in an area which Base Transceiver Station (BTS) is placed.
Detection of blank spots in mountainous area using computer simplifies the placement BTS in network planning. In this research, a simulation software is built to detect blank spots. The simulation covers blank spots detection in the BTS coverage and signal detection from mobile phone.
Blank spots was detected by calculating the field intensity received by the mobile phone using Modified UTD (Uniform Theory of Diffraction) method. The output of the simulation is an image consisted of two colours, black and white, which represented the blank spot and receiving areas, respectively. The larger antenna sensitivity, resulted in smaller area of blank spots, while EIRP and. While the height of BTS antenna was not so significant to determine the area of blank spots.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40459
UI - Skripsi Open  Universitas Indonesia Library
cover
Giatika Chrisnawati
"Kebakaran hutan atau lahan dapat dideteksi dengan menggunakan teknologi penginderaan jauh, yaitu dengan melakukan pemantauan jumlah dan sebaran titik panas di suatu wilayah. Jumlah dan sebaran titik panas diperoleh dengan mengolah citra sensor satelit menggunakan algoritma konversi nilai digital data satelit menjadi suhu.
Satelit yang dapat digunakan untuk pemantauan titik panas adalah satelit NOAA (National Oceanic and Atmospheric Administration) melalui sensor AVHRR (Advanced Very High Resolution Radiometer) dan sensor satelit MODIS (Moderate Resolution Imaging Spectro-Radiometer) yang dibawa oleh satelit Terra dan Aqua. Penentuan titik panas dihitung menggunakan metode yang dikembangkan oleh LAPAN untuk data MODIS dan Forest Fire Prevention and Control Project, Departemen Kehutanan RI, untuk data NOAA/AVHRR. Sementara suhu permukaan daratan, dihitung menggunakan metode yang dikembangkan oleh MAIA, Meteo Prancis.
Sebaran titik panas dan suhu permukaan daratan disajikan dalam bentuk peta 2-dimensi yang diberi data geografis. Perbandingan antara peta sebaran titik panas dan suhu permukaan daratan juga dibahas dalam penelitian ini.

Forest fire or land surface temperature could be analyzed from satellite data using remote sensing technology. The number of hotspot and land surface temperature distribution could be retrieved from the data by converting the digital number into temperature.
In this research, the hotspots are derived from NOAA (National Oceanic and Atmospheric Administration)/AVHRR (Advanced Very High Resolution Radiometer) and EOS (Earth Observing System) TERRA-AQUA/MODIS (Moderate Resolution Imaging Spectro-Radiometer) sensors. For MODIS data, the hotspot is calculated using an algorithm which is developed by LAPAN, and The Forest Fire Prevention and Control Project, Departemen Kehutanan RI, for NOAA/AVHRR data. The Land Surface Temperature (LST) is calculated using the MAIA algorithm which is developed by Meteo France.
The hotspot and LST distribution is mapped into 2-D representation along with geographical information. The comparison of hotspot distribution and land surface temperature map is also investigated.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40436
UI - Skripsi Open  Universitas Indonesia Library
cover
Geraldi Oktio Dela Rosa
"Secara teoritis, biometrik dapat digunakan untuk mengidentifikasi dan memverifikasi suatu individu. Iris mata merupakan salah satu instrumen biometric yang handal, karena keunikan dari dan kompleksitasnya.
Di dalam penelitian ini dirancang bangun program identifikasi iris mata menggunakan metode Jaringan Syaraf Tiruan (JST). Citra mata dijital yang akan diidentifikasi pertama-tama dilakukan pra-pengolahan terlebih dahulu. Proses ini memisahkan bagian iris dari citra mata menggunakan metode morphologi, yaitu close, erosi dan dilasi. Selanjutnya, citra disegmentasi untuk memisahkan citra iris berbentuk lingkaran dalam koordinat x-y menjadi format polar r-θ berbentuk persegi panjang. Citra polar kemudian diekstrasi untuk mendapatkan nilai karakteristik rata-ratanya dalam bentuk matriks 40 x 1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 10 layer tersembunyi, 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 80 citra iris, baik mata kiri maupun kanan, proses identifikasi mencapai tingkat akurasi rata-rata sebesar 87% untuk 5 buah input citra dengan 20 kali uji coba.

Theorically, biometric can be used to identify dan verify an individu. Iris is one of biometric identifier that highly acceptable because of its uniqueness and complexity.
The objective of this research is to identifiy an iris using Artificial Neural Network (ANN) method. First, the digital infrared image of eye will be preprocessed which separate the iris from the eye using morphology technique, such as closing, erosion, and dilation. The iris is then transformed from x-y dimension into r-θ polar image, which convert the circle shape into rectangle one. The image was then extracted in order to get the average value of its intensities and saved in 40 x 1 matrix size. These values will be trained in the ANN and inserted into a database to be used as a comparator in identification process. The ANN consisted of 10 hidden layer, 1 output layer, and activation functions of tansig and purelin, respectively.
Using 80 images as training data, the identification accuracy reached 87 % for 5 images and 20 times of test for left side and right side eyes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52158
UI - Skripsi Open  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
Endriadi Rukmana
"Indonesia adalah negeri kepulauan yang sangat luas namun rawan bencana. Penginderaan jauh dengan menggunakan satelit menjadi hal yang penting untuk memenuhi kebutuhan informasi kebencanaan di seluruh wilayah. Produk sensor MODIS dari satelit Terra milik NASA dapat dipakai sebagai salah satu sumber untuk memenuhi kebutuhan informasi kebencanaan di Indonesia. Dengan memanfaatkan produk indeks vegetasi MODIS Level 4 yakni MOD15A2 LAI/FPAR 8-harian dengan resolusi 1 Km Global, perubahan penggunaan lahan seperti pada hutan dapat dianalisis untuk menilai potensi bencana longsor di suatu wilayah tertentu. Penelitian dilakukan dengan menganalisis data produk LAI/FPAR wilayah Indonesia Timur antara tahun 2005-2011 dengan resolusi temporal 3 tahun. Studi Kasus Indonesia Timur dipilih untuk analisis penelitian ini karena wilayahnya yang masih hijau namun rawan bencana. Penurunan kualitas LAI/FPAR pada wilayah curam ataupun pegunungan meningkatkan potensi bencana longsor di sekitar wilayah bersangkutan. Berdasarkan hasil analisis LAI/FPAR, wilayah Indonesia Timur secara luas mengalami peningkatan luas hutan hingga mencapai 10%, meski secara sempit terjadi konsentrasi penurunan luas hutan mencapai 8% di wilayah Freeport, serta terjadi penurunan luas ladang pada wilayah Wasior akibat bencana longsor pada Oktober 2010. Potensi longsor di Indonesia Timur secara keseluruhan tidak mengalami peningkatan, meski potensi longsor di wilayah PT. Freeport tetap tinggi.

Indonesia is a vast archipelagic country but vulnerable to natural disasters. Remote sensing using satellites have become important to meet the information needs of disaster potential assessment across the region. MODIS sensor products from NASA's Terra satellite can be used as one source to analyze landslide vulnerarability in Indonesia. By utilizing the MODIS vegetation index products named MOD15A2 Level 4 LAI/FPAR 8-day with a resolution of 1 Km Global, land use change such as for forests can be analyzed to assess the landslides in a particular area. We analyzed Eastern Indonesia?s LAI/FPAR product data during 2005-2011 period in 3 years temporal resolution. Three regions in Eastern Indonesia were chosen as case studies since these areas are still have dense vegetation, but disaster-prone. The decreasing quality of LAI/FPAR in steep or mountainous area increases the landslide possibilities around these areas. We found in this research that generally forest area in Eastern Indonesia has increased by 10%, eventhough in Freeport, the LAI/FPAR has decreased by 8%. In Wasior the LAI/FPAR was decreased because of the landslide in October 2010. For overall view, the landslide potential in Eastern Indonesia is not increasing, though it is clearly indicated that around PT. Freeport area, the risk of landslide is still high."
2011
S157
UI - Skripsi Open  Universitas Indonesia Library
cover
Elfa Diasmara
"Teknologi satelit telah banyak berperan dalam perkembangan aplikasi ilmu penginderaan jarak jauh, terutama dalam menganalisa keadaan vegetasi di bumi. Indeks vegetasi adalah salah satu parameter yang digunakan untuk menganalisa keadaan vegetasi dari suatu wilayah. Indeks tersebut mempunyai berbagai macam variasi algoritma. Algoritma yang akan dibahas pada penelitian ini adalah algoritma NDVI dan EVI. Algoritma EVI merupakan hasil turunan dan perkembangan dari algoritma NDVI. Sehingga, algoritma EVI memiliki banyak keunggulan yang tidak dimiliki algoritma NDVI. Satelit NOAA dan satelit TERRA/AQUA digunakan untuk membawa sistem sensor AVHRR dan MODIS. Kedua sistem sensor tersebut bisa diaplikasikan untuk keperluan vegetasi, terutama dalam aplikasi algoritma NDVI. Namun, data NDVI dari yang diperoleh kedua sensor tersebut ternyata memiliki perbedaan yang cukup signifikan. Perbedaan hasil olah dari data yang diperoleh dari dua jenis sensor satelit inilah yang juga akan dibahas lebih lanjut pada penelitian ini.

Satellite technologies have influenced so much in the development of remote sensing discipline, especially when dealing with the vegetation condition on earth. Vegetation index is one the parameters which are used to analyze the vegetation condition on a certain area. That index has many variants of algorithm. This paper dealt with the NDVI and EVI algorithm. The EVI algorithm was derived and developed from NDVI algorithm. Therefore, the EVI has many features that NDVI algorithm doesn?t have. NOAA and TERRA/AQUA satellites are used to carry AVHRR and MODIS sensor systems. Both of the systems could be applied to derive the vegetation index, which is calculated using the EVI and NDVI algorithm. However, the degree of greenness of the vegetation in the form of NDVI values from those sensors would yield significantly different results. The different results from both sensors were also investigated in this paper."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40370
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9   >>