Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116 dokumen yang sesuai dengan query
cover
Nurul Hidayat
"ABSTRAK
Tesis ini membahas estimasi trispektrum yang digunakan 'untuk pengembangan sistem pengenal suara. Estimasi trispektrum dipakai untuk mendapatkan karakteristik suara berdasarkan analisis spektrum orde 3 (quadruple correlation) dari magnitudo dan rase sinyal suara. Dalam proses ekstraksi ciri dari data trispektrum digunakan teknik optimasi kuantisasi skalar, yaitu dengan mengelompokkan data magnitudo dan fase berdasarkan pembagian ruang estimasi dengan sejumlah pola berdasarkan ciri-ciri data trispektrum. Data magnitudo dan fase pewakil dari masing-masing kelompok (kluster) menjadi masukan sel syaraf di lapis masukan dari JST PB. Spesiflkasi JST PB sebagai pengklasifikasi suara adalah : jumlah sel syaraf (neuron) di lapis masukan sebanyak 18, di lapis tersembunyi sebanyak 5, dan di lapis keluaran sebanyak 10.
Dari beberapa hasil yang diperoleh terlihat bahwa trispektrum mempunyai daya pisah (separabilitas pola) yang cukup baik, tetapi penggunaan estimasi trispektrum ini dihadapkan pada masalah optimasi kuantisasi dan optimasi jaringan pengidasifikasi yang cukup kompleks. Hal ini disebabkan oleh bertambahnya dimensi data trispektrum, clan 1-D (2-D) pada power spektrum (bispektrum) menjadi 3-D, yang berarti terjadi "the curse of dimensionality".
Sistem pengenal suara ini diimplementasikan dengan Bahasa C pada komputer Sun SPARC station 4, dengan sistem operasi UNIX (Solaris) dan memory 32 MR Jumlah data suara yang akan dikenali berasal dari 10 orang yang berlainan, masing-masing sebanyak 20 sampel. Proses pembelajarannya menggunakan algoritma propagasi balik jack-larife-training terhadap sinyal tanpa noise, sedangkan proses pengenalannya menggunakan sinyal dengan SNR co , SNR = 20, SNR = 10, dan SNR = O. Hasil eksperimen menunjukkan bahwa penggunaan estimasi trispektrum pada sistem pengenal suara tahan terhadap noise Gaussian aditip hingga tingkat SNR41."
1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wawan Setiawan
"Wajah merupakan salah satu bagian dari manusia yang bersifat unik. Namun demikian wajah memiliki sifat fleksibel. Secara psikologi, wajah manusia memiliki enam konfigurasi dasar : netral, gembira, sedih, marah, senyum, dan kaget. Seseorang dapat saja dikenali berdasarkan konfigurasi dasar dari wajah karena keunikannya. Dalam penelitian ini dirancang suatu sistem pengenalan wajah melalui jaringan neural buatan berbasis eigenfaces. Eigenfaces merupakan salah satu metode ekstraksi ciri dari wajah yang dapat dilakukan dengan Cara kroping holistik atau parsial. Ekstraksi ciri holistik merupakan cara pengambilan ciri wajah dengan suatu kroping yang meliputi seluruh komponen utama wajah, sedangkan ekstraksi ciri parsial merupakan cara pengambilan ciri wajah dengan kroping pada setiap komponen utama wajah. Komponen utama wajah dalam hal meliputi hidung, mata kanan, mata kiri, dan mulut. Melalui metode eigenfaces sebagai pra-prosesing, dapat diperoleh ciri wajah sebagai masukan bagi jaringan neural buatan. Sistem jaringan neural yang digunakan adalah jaringan perseptron lapis jamak dengan pembelajaran propagasi balik murni, dan gabungan swa-organisasi dan propagasi balik (hibrid). Penggunaan dua model pembelajaran ini dimaksudkan untuk membandingkan tingkat pengenalan diantaranya. Dengan melakukan perubahan metode dan pemilihan parameter tertentu seperti metode inisialisasi bobot dan bias, fungsi error, momentum, laju pembelajaran, dan jumlah neuron lapis tersembunyi, standar propagasi balik dapat ditingkatkan kemampuannya. Pembelajaran dengan jaringan hibrid meningkatkan kinerja jaringan, baik konvergensi maupun generalisasi dibanding propagasi batik murni. Namun demikian, untuk menggunakan jaringan hibrid, perlu pemilihan beberapa nilai parameter seselektif mungkin yaitu pemilihan nilai ambang, penyearah, laju pembelajaran, dan momentum. Hasil uji coba dengan kedua model pembelajaran menunjukkan bahwa eigenfaces merupakan cara yang cukup representatif untuk ekstaksi dan reduksi ciri pola wajah. Dengan mengambil eigenfaces yang besesuaian dengan nilai eigen 0.1, dengan perbandingan pola training dan testing 50% : 50%, sistem mampu mengenali sekumpulan wajah hingga di atas 90%, dan pengenalan dapat ditingkatkan lagi dengan memperbesar perbandingan poly training/testing.

The face is one of the unique parts of a human being. However, the face has a flexible nature. Psychologically, the human face has six basic configurations: neutral, happy, sad, angry, smiling, and surprised. A person can be recognized based on the basic configuration of the face because of its uniqueness. In this study, a facial recognition system was designed through an artificial neural network based on eigenfaces. Eigenfaces is one of the methods of extracting facial features that can be done by holistic or partial cropping. Holistic feature extraction is a method of taking facial features with a cropping that includes all the main components of the face, while partial feature extraction is a method of taking facial features with cropping on each main component of the face. The main components of the face in terms of nose, right eye, left eye, and mouth. Through the eigenfaces method as pre-processing, facial features can be obtained as input for the artificial neural network. The neural network system used is a multi-layer perceptron network with pure backpropagation learning, and a combination of self-organization and backpropagation (hybrid). The use of these two learning models is intended to compare the level of recognition between them. By changing the method and selecting certain parameters such as the weight and bias initialization method, error function, momentum, learning rate, and the number of hidden layer neurons, the standard backpropagation can be improved. Learning with a hybrid network improves network performance, both convergence and generalization compared to pure batik propagation. However, to use a hybrid network, it is necessary to select several parameter values ​​as selectively as possible, namely the selection of threshold values, rectifiers, learning rates, and momentum. The results of the trial with both learning models show that eigenfaces are a fairly representative way for the extraction and reduction of facial pattern features. By taking eigenfaces that correspond to an eigenvalue of 0.1, with a training and testing pattern ratio of 50%: 50%, the system is able to recognize a group of faces up to above 90%, and recognition can be improved again by increasing the poly training/testing ratio.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hary Budiarto
"ABSTRAK
Sistem penciuman elektronik terdiri dari 3 bagian yaitu sistem sensor yang merubah besaran aroma menjadi besaran listrik, sistem elektronik yang mengukur besar perubahan frekuensi sensor dan sistem jaringan neural buatan yang melakukan pengenalan aroma. Peningkatan kemampuan pengenalan aroma yang cepat, tepat dan akurat pada sistem neural buatan sangat diperlukan oleh sistem penciuman elektronik ini, untuk itu perlu dikembangkan metode fuzzy learning vector quantization.
Metode FLVQ merupakan metode jaringan neural buatan berbasis pada vector quantization yang mengintegrasikan teuri fuzzy dalam proses pembelajarannya dan mempunyai algoritma yang sederhana tetapi berkemampuan tinggi dalam pengenalan aroma. Pengembangan fuzzy learning vector quantization berfokus pada proses pembelajarannya terutama pada cara merubah fuzziness vektor pewakil. Berdasarkan cara perubahan fuzzinessnya ada tiga variasi FLVQ yang dinamakan FLVQ konstan, yaitu merubah lebar fuzziness vektor pewakil dengan besaran yang konstan; FLVQ variabel, yaitu merubah lebar fuzziness vektor pewakil berdasarkan nilai similaritas; dan FLVQ tunggal, yaitu merubah lebar fuzziness vektor pewakil hanya pada salah satu bagian sisinya.
Hasil Penelitian dengan sampel aroma produk marta tilaar dan aroma etanol menunjukkan bahwa jaringan neural buatan FLVQ mempunyai kemampuan pengenalan yang lebih baik bila dibandingkan dengan propagasi balik."
1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sutrisno
"Penentuan lokasi sumber kebocoran gas ataupun masalah pelacakan dalam penyelundupan obat bius sangat penting untuk dapat dilakukan dengan cepat dan tepat. Hingga scat ini pelacakaan sumber gas secara elektronik masih jarang dilakukan penelitian, hal ini disebabkan belum berkembangnya sistem sensor gas. Makalah ini membahas pembuatan sistem penentuan dan pelacakan sumber gas dengan menggunakan 3 buah sensor semikonduktor model TGS-822 yang dikontrol oleh komputer dan gerakan pelacakan secara manual. Mekanisme respon dari sensor gas bahan semikonduktor ini didasarkan pada teradsorbsi oksigen yang berada pada lingkungan gas sehingga terjadi penurunan konsentrasi elektron bebas pada bahan semikonduktor dan konduktivitas sensor menjadi lebih rendah. Hal ini berkaitan langsung dengan konsentrasi gas yang terdeteksi. Sistem ini telah diuji secara elektronik dan telah digunakan dalam uji coba melacak sumber gas dari alkohol. Hasil uji coba sistem ini meliputi: kestabilan sistem sensor dalam mendeteksi gas, karakteristik sistem sensor, kalibrasi sensor, pola medan gas dalam terowongan angin, sistem pelacakan sumber gas."
Depok: Fakultas Teknik Universitas Indonesia, 1997
T8531
UI - Tesis Membership  Universitas Indonesia Library
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Muchamad Irvan G.
"Tugas akhir ini merupakan lanjutan dari penelitian sebelumnya (Sanabila, 2008) dalam pengenalan sudut wajah dengan konsep yang sama, yaitu data acuan awal memiliki interval tertentu, dibuat data acuan baru menggunakan interpolasi, lalu data uji dihitung jaraknya terhadap semua data acuan, data acuan dengan jarak terdekat merupakan hasil tebakan. Perbedaan dalam penelitian ini adalah penggunaan data rata-rata dan data fuzzy sebagai data acuan, perbedaan dalam PCA yang dilakukan, serta penggunaan control point placement dalam interpolasi Bezier kuadratik.
Skema eksperimen dibagi menjadi dua, menggunakan set data yang sama dengan penelitian sebelum ini dan menggunakan set data yang lebih kecil intervalnya. Selain itu, penelitian ini juga mencakup pengenaan distorsi.
Kesimpulan dari peneltian ini adalah penggunaan data rata-rata lebih baik daripada data masing-masing foto yang harus dipisahkan berdasarkan kelas wajah terlebih dahulu, penggunaan PCA memberi hasil yang baik, algoritma dengan data fuzzy belum memberi hasil sebaik data rata-rata, pengenaan distorsi kurang mempengaruhi hasil pengenalan algoritma untuk eksperimen yang memakai data rata-rata, dan pemakaian control point placement menghasilkan tingkat pengenalan yang lebih baik untuk eksperimen dengan data rata-rata.

This final project is a continuity of previous research about angle estimation with the same main concept: with reference data in some intervals, new reference data with smaller intervals was made with the use of interpolation, and distances between testing data and all reference data was calculated, the reference data with the closest distance was the algorithm?s estimation (Sanabila, 2008). Differences made were the use of average data (crisp data) and fuzzy data for each angle as reference data, differences in PCA algorithm, and the use of control point placement in quadratic bezier interpolation.
Experiment scenarios were divided into two main schemes based on the intervals of the data set, the first one was an experiment scheme with the same data set intervals with previous research and another one was experiment scheme with smaller intervals. Data manipulation with noise addition have also been done in some experiment schemes.
Some of the Conclusions were: use of average data was more efficient than one data for each picture, the use of PCA gave better result than experiments without PCA, experiments with average data gave better result than with fuzzy data, noise addition to data did not effect the recognition rate of the algorithm for experiments with average data (crisp), control point placement gave better result in experiments with average data.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Anugrah Ramadhani
"Penelitian tugas akhir ini meliputi tiga hal utama, yaitu pengembangan perangkat lunak sistem pintu otomatis yang dapat berjalan secara real time, penerapan algoritma pengenalan wajah Fuzzy Neuro Learning Vector Quantization berbasiskan dimensi pada perangkat lunak, dan pengujian atau eksperimen dari algoritma Fuzzy Neuro Learning Vector Quantization berbasiskan dimensi dengan menggunakan data wajah yang tidak ideal. Hasil yang diharapkan adalah perangkat lunak dari sistem yang dapat berjalan secara real time, dan gambaran perilaku dari algoritma Fuzzy Neuro Learning Vector Quantization berbasiskan dimensi dalam menangani data tidak ideal.
The purpose of this final project research included three main things, the development of auto door-lock system software that can run in real time, the application of the Fuzzy Neuro Learning Vector Quantization dimension based algorithm, and the experiment of Fuzzy Neuro Learning Vector Quantization dimension based algorithm using non ideal data. The results of this research are, the real time auto door-lock system software, and the behavior of Fuzzy Neuro Learning Vector Quantization dimension based algorithm in dealing with non ideal data."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Laksmita Rahadianti
"Latar belakang penelitian ini adalah kebutuhan penerapan pengenalan wajah dalam berbagai aplikasi dunia nyata. Pengenalan wajah dapat dilakukan dengan beberapa pendekatan, salah satunya adalah pendekatan dengan jaringan syaraf tiruan. Salah satu algoritma yang dikenal dan digunakan adalah Fuzzy Neuro Learning Vector Quantization (FNLVQ). Pernyataan masalah yang muncul adalah tingkat pengenalan FNLVQ konvensional yang masih bisa ditingkatkan dan kebutuhan akan jaringan yang mampu membaca citra yang mengandung noise. Tujuan riset ini adalah untuk memperlajari karakteristik algoritma FNLVQ melalui eksperimen dan pengujian terhadap citra asli dan citra dengan noise, pengembangan algoritma FNLVQ berbasiskan dimensi dalam rangka meningkatkan tingkat pengenalan serta mengujinya dengan citra asli dan citra dengan noise, serta perbandingan performa antara keduanya. Ada 2 kriteria pengukuran hasil, yaitu tingkat identifikasi dan klasifikasi. Tingkat identifikasi kemampuan jaringan untuk mengidentifikasi citra sebagai kelas yang sesuai sedangkan tingkat klasifikasi adalah kemampuan jaringan untuk memisahkan antara citra yang teregistrasi dan tidak teregistrasi. Tingkat identifikasi algoritma berbasiskan vektor konvensional adalah 30% dan meningkat hingga 85% dengan algoritma berbasiskan dimensi. Dalam hal tingkat klasifikasi, algoritma konvensional cenderung tidak mampu mengenali data tidak teregistrasi, sedangkan algoritma berbasiskan dimensi mampu memisahkan data teregistrasi dan tidak teregistrasi dengan baik. Untuk citra dengan noise, kedua algoritma mengalami penurunan pengenalan. Tingkat identifikasi algoritma berbasiskan dimensi masih tidak lebih baik daripada algoritma konvensional berbasiskan vektor untuk beberapa jenis noise, tetapi tingkat klasifikasi yang dicapai lebih baik antara pengenalan data teregistrasi dan tidak teregistrasi.
The background of this research was the need to apply face recognition in many applications in real life. Face recognition can be done using a number of approaches, one of them is by using artificial neural networks. A known algorithm used to train a neural network is the Fuzzy Neuro Learning Vector Quantization (FNLVQ). The research questions emerging from this background were the issue of the FNLVQ recognition rate that can still be increased and the need to create a network that is robust to noise. The research objectives were to study of the characteristics of the FNLVQ algorithm using experiments and testing it with both pure and noisy images, in attempt to increase the recognition rate the dimension-based approach to the FNLVQ learning algorithm was developed and tested with both pure and noisy images, and finally the two algorithms were then compared and analyzed. There were 2 criterions of measurement, the identification rate and classification rate. The identification rate is the ability of the algorithm to identify each image as the right person, and the classification rate is the ability of the algorithm to classify an image as a registered or unregistered person. The identification rate was around 30% with the conventional vector based algorithm, and could be increased to 85% with the dimension based algorithm. For the classification rate, with the conventional algorithm the unregistered data could not be recognized and with the new dimension-based approach, the unregistered and registered data could be differetiated. As for the noisy images, both algorithms experienced a decreased recognition rate. The identification rate of the dimension based algorithm still did not exceed the recognition rate of the vector based algorithm for most noises, but the classification rate was more stable between both registered and unregistered clusters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Hari Prasetyo
"Penelitian ini melanjutkan penelitian sebelumnya tentang pengenalan wajah tiga dimensi dengan HSHL-NN. HSHL-NN adalah struktur neural network dengan hidden layer yang berbentuk hemisfer. Penelitian sebelumnya citra yang digunakan kondisinya ideal atau normal, dalam kenyataannya citra yang didapatkan tidak selalu ideal.
Pada penelitian ini, penulis mencoba untuk melakukan percobaan dengan menggunakan citra yang telah terdegradasi oleh noise untuk menguji kekuatan HSHL-NN. Noise yang dipakai dalam penelitian ini ada empat macam, yaitu Gaussian, poisson, salt & pepper, dan juga speckle. Selain itu, penulis juga menguji hasil estimasi sudut yang telah dihasilkan pada penelitian lain. Citra masukan yang digunakan direduksi menggunakan principal component analysis.
Kesimpulan yang didapatkan dari analisis hasil percobaan yang dilakukan adalah HSHL-NN masih dapat mengenali objek dengan baik walaupun citra yang digunakan sebagai data acuan maupun data uji telah terdegradasi dengan noise, selain itu dapat disimpulkan bahwa hasil estimasi sudut yang dijadikan masukan informasi sudut pada HSHL-NN hasilnya sangat baik.

This research is a continuation to previous researchs about three dimensional face recognition using HSHL-NN. HSHL-NN is a neural network with its hidden layer structured like a hemispher. In previous researchs, images are ideal, meaning that the quality of image is normal and noise-free. In reality, the taken images would not always ideal, which can be noisy.
In this research, writer tried to do experiments using noisy-degraded images to test the strength of the HSHL-NN. There are four kinds of noises used in this research: Gaussian, poisson, salt & pepper, and speckle. Besides doing the experiment with the noise-degraded image, writer also evaluated the result from pose estimation research. Images used in this research are reduced using principal component analysis.
This research concluded that HSHL-NN is strong enough to recognize noise-degraded images. On the other hand, the results from experiments with pose estimation as angle input in HSHL-NN is satisfying."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Restomi
"Dalam bidang pengenalan citra wajah dua dimensi telah diujikan sistem
jaringan saraf tiruan hibrida (JST-Hibrida) dan Averaging Representation berbasiskan Eigenface dan Fisherface. Dalam pengujiannya, JST-Hibrida memiliki kemampuan pengenalan yang lebih buruk dibandingkan Averaging Representation. Dalam penelitiannya, penulis mengimplementasikan jaringan saraf tiruan propagasi balik (JST-PB) yang ternyata memiliki kemampuan pengenalan di atas JST-Hibrida dan Averaging Representation. Untuk meningkatkan kinerja jaringan dan sekaligus mengoptimasi struktur jaringan maka digunakan algoritma genetika untuk memangkas koneksi-koneksi
yang tidak diperlukan. Algoritma genetika ternyata mampu menemukan solusi yang bagus dengan jumlah koneksi yang lebih kecil.
Dalam pengujiannya dipergunakan berbagai citra wajah dua dimensi
dengan berbagai variasi ekspresi dan pencahayaan. Metode yang digunakan untuk mereduksi dimensi citra adalah metode Fisherface. Metode Fisherface dapat mengenali wajah, baik untuk berbagai variasi cahaya dan ekspresi wajah. Hasil pengujian menunjukkan bahwa Algoritma Genetika mampu meningkatkan kemampuan pengenalan JST-PB terhadap citra wajah dua dimensi."
2000
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>