Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Wahyono Suprapto
"Porositas merupakan cacat yang sering terjadi dalam pengecoran paduan aluminium yang sulit dihindari, tetapi porositas dalam produk cor harus dibuat sekecil mungkin. Ketidaksesuaian proses pengecoran sering menimbulkan porositas yang mengakibatkan kualitas produk turun atau produk harus di daur ulang. Umumnya, porositas dalam paduan aluminium disebabkan oleh hidrogen larut dan terjebak, atau feeding yang kurang. Selama ini porositas dicegah dengan proses degassing konvensional seperti; fluxing, injecting, pressing, dan partial vacuuming tetapi belum memberikan hasil yang optimal. Pengecoran duralumin dengan vacuuming tekanan rendah yang terintegrasi, yang disebut pengecoran sistem vakum, sampai sekarang belum pernah dilakukan dan diteliti oleh praktisi dan ilmuwan. Penelitian porositas pada paduan Al-Cu (duralumin) dilakukan dengan membuat ingot duralumin dari aluminium dan tembaga dalam tungku reveberatory. Selanjutnya dilakukan pembuatan spesimen dengan melebur ulang ingot duralumin, menuang, dan membekukannya dalam tungku pengecoran sistem vakum. Variabel bebas dalam penelitian ini adalah kontrol parameter proses pengecoran dengan variasi penambahan tembaga 2,5%Cu sampai 4,5%Cu dan variasi tekanan vakum melting 0,789 kg/cm2 sampai 0,263 kg/cm2. Suhu peleburan dan penuangan duralumin (700°C), waktu holding duralumin melt (15 menit), tekanan solidifikasi 10 cmHg lebih kecil dari tekanan melting, dan preheating cetakan (300°C) merupakan parameter kontrol pengecoran. Sebagai variabel terikatnya adalah kualitas duralumin cor yang terdiri dari; berat jenis, kuantitas dan morfologi porositas, dan senyawa dalam duralumin. Instrumen uji yang digunakan adalah optical emission spectrometry, Picnometer, optic dan scanning electron microscope, X-ray diffraction. Hasil penelitian menunjukan bahwa bertambahnya kandungan tembaga dan tingkat kevakuman menyebabkan berat jenis duralumin meningkat. Kenaikan paduan tembaga menyebabkan porositas bertambah dari 16,67% sampai 21,20%. Hasil penelitian pengecoran tekanan vakum menyebabkan porositas turun dari 20,35% sampai 15,56%, dan jenis porositas yang terjadi adalah porositas gas. Dalam duralumin terjadi fasa metalik; Al2Cu, Al8Si6Mg3Fe dan fasa inklusi non-metalic; Al2O3, Al4C3. Pengecoran duralumin yang optimal dicapai pada penambahan tembaga 3,35%Cu dan tekanan vakum 0,566kg/cm2 dengan jumlah porositas 17,5%.

Porosity is a defect that often happens in aluminum casting that is difficult to avoid, but porosity on casting product must be minimized as much as possible. Improper casting process often creates porosity which decreases product quality, or the product must be recycled. Generally porosity in aluminum mixture caused by dissolved and trapped hydrogen, or inadequate feeding. Until now, porosity is avoided by using conventional degassing process such as: fluxing, injecting, pressing, and partial vacuuming, but those have not been giving optimal result. Duralumin casting with integrated low pressure vacuuming which called vacuum system casting have never been done by practitioners and scientists. Porosity research on Al-Cu mixture (duralumin) is done by making duralumin ingot from aluminum and copper in reveberatory furnace. Next, specimen creation is done by remelting ingot duralumin, pouring, and solidifiying it in the vacuum system casting furnace. Independent variable in this research is parameter control of casting process with copper additional variation from 2,5%Cu up to 4,5%Cu and variation of vacuum pressure melting 0,789 kg/cm2 up to 0,263 kg/cm2. Melting temperature and duralumin pouring (700°C), holding time of duralumin melt (15 minutes), solidification pressure 10 cmHg smaller than melting pressure, and preheating print (300°C) are casting parameter controls. As the dependent variable is cast duralumin quality which consists of: density, quantity, and porosity morphology, and compound in duralumin. Testing instrument used are optical emission spectrometry, Picnometer, optic and scanning electron microscope, and X-ray diffraction. Research result shows that the increment of copper content and vacuum level cause duralumin density increases. However, the increment of copper mixture cause porosity increases from 16,67% until 21,20%. Result of vacuum pressure casting cause porosity decrease from 20,35% until 15,56% and porosity that happens is gas porosity. Metallic phase; Al2Cu, Al8Si6Mg3Fe and inclusion phase non-metallic; Al2O3, Al4C3 is heppen in the duralumin. An optimum duralumin casting is reahed at copper addition of 3,35%Cu and vacuum pressure 0,566kg/cm2, with porosity level at 17,5%."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1297
UI - Disertasi Open  Universitas Indonesia Library
cover
Is Prima Nanda
"ABSTRAK
Telah dilakukan penelitian pengaruh penambahan Fe dan Sr berhadap perubahan struktur mikro paduan hipoeutektik Al-7% Si dan paduan eutektik Al-11% Si terutama terhadap pembentukan fasa intermetalik dan nilai fluiditas paduan dengan metode vakum (vacum suction test). Perancangan dan pembuatan alat uji fluiditas metode vakum ini dilakukan untuk meminimalisasi kekurangan-kekurangan yang didapat dari pengujian fluiditas metode spiral dan metode lainnya. Hasil perancangan dan pembuatan alat ini untuk mendapatkan pengukuran temperatur dan kecepatan tuang yang lebih presisi pada saat melakukan pengujian fluiditas. Penelitian yang telah dilakukan oleh para peneliti sebelumnya, beberapa telah meneliti penggunaan Sr sebagai modifier, akan tetapi belum ada penelitian yang memfokuskan pada keterkaitan antara Sr sebagai modifier dan nilai fluditas dari paduan hipoeutektik Al-7% Si dan paduan eutektik Al-11% Si menggunakan metode vakum. Penelitian yang dilakukan pada prinsipnya dibagi ke dalam beberapa bagian, yaitu pembuatan peralatan uji fluiditas metode vakum dan validitasnya, pembuatan master alloy hipoeutektik dan eutektik serta karakterisasinya, dan rekayasa penambahan unsur Fe dan Sr pada kedua paduan untuk melihat pengaruh penambahan Fe dan Sr terhadap pembentukan fasa intermetalik dan nilai fluiditas kedua paduan.
Karakterisasi yang dilakukan adalah analisis struktur mikro, terutama fasa intermetalik yang terbentuk pada paduan Al-7% Si dan Al-11% Si secara kuantitatif dan kualitatif, menggunakan mikrosokop elektron yang dilengkapi spektroskopi sinar-X (SEM/EDX) dan difraksi sinar-X (XRD).
Dalam pembuatan peralatan uji fluiditas metode vakum, pengujian validasi dengan menambahkan modifier Sr dan grain refiner Al5TiB pada paduan komersial ADC12 didapatkan hasil yang sesuai dengan literatur. Penambahan 0,03% Sr memberikan nilai fluiditas yang paling baik, sedangkan penambahan 0,15% Al5TiB menghasilkan butir yang halus dan nilai fluiditas yang paling baik. Sementara itu, waktu proses degassing sangat menentukan nilai fluiditas, karena semakin lama waktu degassing yang diberikan akan meningkatkan nilai fluiditas paduan komersial ADC12. Hal ini dapat dipahami karena proses degassing akan mengikat gas hidrogen yang ada dalam logam cair, dimana keberadaan gas ini akan menyebabkan cacat pada produk cor.
Dari hasil pengujian dan validasi variasi jenis pipa dan tekanan didapatkan bahwa, dalam penelitian ini, pipa tembaga dengan tekanan 8 inHg yang paling baik untuk digunakan. Dari hasil pengujian fluiditas pada paduan Al-7% Si yang ditambahkan Fe, didapatkan bahwa semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas semakin turun. Hal ini dapat dipahami karena Fe akan membentuk senyawa intermetalik Al-Fe-Si yang mengganggu proses mampu alir paduan aluminium dimana semakin banyaknya fasa intermetalik yang terbentuk akan semakin menurunkan fluiditasnya.
Pengujian fluiditas paduan Al-7% Si yang ditambahkan 1,2% Fe; 1,4% Fe; dan 1,6% Fe serta 0,015% Sr- 0,045% Sr memberikan hasil bahwa dengan semakin tingginya temperatur tuang maka nilai fluiditas akan semakin tinggi pada semua komposisi. Pada penambahan 0,03% Sr didapatkan nilai fluiditas yang paling tinggi pada setiap komposisi; dalam hal ini penambahan 0,03% Sr akan memodifikasi silikon primer menjadi lebih bulat dan mengubah morfologi fasa intermetalik menjadi lebih pendek. Dengan bertambahnya kadar Fe maka ukuran panjang dan lebar maupun fraksi luas intermetalik fasa intermetalik β-Al5FeSi akan semakin meningkat. Pada paduan Al-7% Si didapatkan fasa intermetalik yang paling panjang pada penambahan 1,6% Fe yaitu 22,21 μm dan yang paling pendek pada penambahan 1,2% Fe yaitu 9,66 μm. Untuk fraksi luas intermetalik yang terbentuk, dengan penambahan Fe yang semakin tinggi, akan menghasilkan fraksi luas intermetalik yang semakin besar. Pada penambahan 1,2% Fe menghasilkan fraksi luas intermetalik 3,67%, sedangkan pada penambahan 1,4% Fe dan1,6% Fe masing-masingnya menghasilkan fraksi luas 4,03% dan 5,23% Dari hasil pengujian fluiditas pada paduan Al-11% Si yang ditambahkan Fe, juga didapatkan bahwa semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas semakin turun. Sedangkan pengujian fluiditas paduan Al-11%Si yang ditambahkan Fe dan Sr yang bervariasi juga memberikan hasil yang sama seperti pada paduan Al-7% Si, dimana dengan semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas paduan akan turun, sedangkan nilai fluiditas yang paling tinggi diberikan oleh penambahan Sr sebesar 0,03%. Pada penambahan 1% Fe memberikan fasa intermetalik yang paling panjang yaitu 50,25 μm, sedangkan fasa intermetalik yang paling pendek diberikan oleh penambahan 0,6 % Fe yaitu 21,3 μm. Pada paduan Al-11% Si umumnya dengan penambahan Fe yang semakin tinggi, akan menghasilkan fraksi luas intermetalik yang semakin besar. Pada penambahan 0,6% Fe menghasilkan fraksi luas intermetalik 1,01%, sedangkan pada penambahan 0,8% Fe dan 1% Fe masing-masingnya menghasilkan fraksi luas 1,16% dan 2,26%.
Hasil pengujian fluiditas, baik pada paduan Al-7% Si maupun pada paduan Al-11 %Si memperlihatkan adanya kecendrungan bahwa dengan bertambahnya kadar Fe, akan semakin menurunkan nilai fluiditasnya; akan tetapi apabila ditambahkan dengan Sr, nilai fluiditasnya akan kembali naik. Perubahan nilai fluiditas ini didukung oleh morfologi struktur mikro dari hasil pengujian SEM yang memperlihatkan adanya matrik aluminium, struktur silikon, dan fasa intermetalik. Komposisi yang didapatkan melalui perkiraan hasil EDX diperkuat dengan data dari hasil pengujian XRD yang kemudian mengidentifikasi akan adanya fasa intermetalik α dan β . Akan tetapi, jika pada kedua paduan ini ditambahkan modifier Sr maka terjadi perubahan morfologi fasa intermetalik.
Dari hal ini dapat disimpulkan bahwa Sr berfungsi mengubah struktur mikro fasa intermetalik yang panjang menjadi lebih pendek dan bulat sehingga akan menaikkan nilai fluiditas dari kedua paduan ini. Pada penambahan 0,03% Sr didapatkan nilai fluiditas paling baik pada setiap komposisi , dalam hal ini penambahan 0,03% Sr akan memodifikasi silikon primer menjadi lebih bulat dan mengubah morfologi fasa intermetalik menjadi lebih pendek.

ABSTRACT
The effect of Fe and Sr addition on the intermetallic phase(s) formation and fluidity of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys has been investigated. Vacuum suction test equipment development for fluidity test was designed to minimize the disadvantages from spiral and other fluidity test methods. This fluidity test design was aiming at obtaining a precise temperature measurement and pouring rate in the fluidity test. Many researchers have investigated the role of Sr as a modifier but none of them focused in the relationship of Sr as a modifier and its effect on the fluidity of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys by using vacuum suction test.
In this investigation, the work is divided into several sections, i.e. vacuum suction test equipment designing and development for fluidity test and its validity, synthesis of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys (master alloys) and their characterization, and effect of Fe and Sr elements addition into the master alloys on the intermetalic phase(s) formation and fluidity. The characterization that has been carried out including microstructure by using electron microscope (SEM/EDX) and X-ray diffraction (XRD).
In the test equipment designing and development for fluidity test, validation test on the addition of Sr and grain refiner Al5TiB into commercial ADC12 alloy gives the same result as in literatures, in which the addition of 0.03% Sr gives the best performance while addition of 0.15% Al5TiB results in fine grain and the best fluidity. At the same time, degassing time affects the flowability greatly in which the more time for degassing the better the fluidity of the commercial ADC12 alloy. This can be understood since the degassing process will reduce the hydrogen gas in the melt, which may cause defect in the casting product. The validation test on the vacuum suction equipment also shows that, in this investigation, copper tube with a pressure of 8 inHg provides the best performance.
The fluidity test on the Al-7% Si alloy with the addition of Fe shows that the increasing of Fe content results in decreasing of the fluidity. This can be understood since Fe will form an intermetalic phase of Al-Fe-Si, which will interfere and further slow down the flowability of aluminum alloys. At the same time, addition of 1.2% Fe; 1.4% Fe and 1.6% Fe, and 0.015% Sr ? 0.045% Sr shows that the flowability of the alloy increases with the increasing of temperature at all compositions. In this investigation, addition of 0.03% Sr results in the highest fluidity; in this instance, addition of 0.03% Sr will modify lath primary silicon intermetallic phase to become more round and changes the intermetallic phase morphology shorter than that of without Sr addition. The formation of intermetallic phase β-Al5FeSi within Al-7% Si alloy increase with Fe content. This can be understood since the ability of Sr to modify the intermetallic phase decreases with the increase of Fe content. With the increase of Fe content, the fraction of β-Al5FeSi increases both in length and area fraction of the intermetallic phase. In this investigation, the intermetallic phase with the maximum length of 22.2 μm occurs at the addition of 1.6% Fe while the intermetallic phase with the shortest length of 9.66 μm occurs at the addition of 1.2% Fe. In the event that Sr element is added into the alloys containing these Fe contents, the size of the intermetallic phases changes with the average length of 11.3 μm. In general, the increasing content of Fe results in the increasing area fraction of the intermetallic phase. Addition of 1.2% Fe results in intermetallic area fraction of 3.67%, whilst addition of 1.4% Fe and 1.6% Fe results in the intermetallic area fractions of 4.03% and 5.23% respectively.
Fluidity test on the Al-11 % Si alloy with the addition of Fe also shows that the more Fe content the less the fluidity of the alloy. At the same time, fluidity test on the Al- 11% Si alloy with the addition of various Fe and Sr compositions also results in the same way as that of Al-7% Si alloy, in which the increasing of Fe content results in decreasing of the fluidity, while the highest fluidity is given by the addition of 0.03% Sr. The formation of intermetallic phase β-Al5FeSi within Al-11% Si alloy also increase with Fe content. With the increase of Fe content, the fraction of β-Al5FeSi increases both in length and area fraction of the intermetallic phase, in which the intermetallic phase with the maximum length of 50,25 μm occurs at the addition of 1.0% Fe while the intermetallic phase with the shortest length of 21,3 μm occurs at the addition of 0.6% Fe. Addition of 0.6% of Fe results in intermetallic area fraction of 1,01%; while addition of 0.8% and 1.0% results in area fractions of 1.16% and 2.26%, respectively.
The fluidity tests of both Al-7% Si and Al-11% Si alloys show the same trend in which the more Fe content the less the fluidity, while addition of Sr increases the fluidity. The change in this fluidity result is supported by morphology and microstructure of the alloys taken from the SEM, which shows an aluminum matrix, silicon structure, and intermetallic phases. The predicted compositions from EDX analysis are supported by XRD data analysis, which identifies the presence of the intermetallic phases of α and β. However, in the event that Sr is added into these two alloys, the intermetallic phases will be change. It can be concluded that Sr has an effect on the microstructure of the intermetallic phases, in which the addition of 0.03% Sr gives the best fluidity at all compositions; in this instance, addition of 0.03% Sr modifies primary lath silicon into more round and changes the intermetallic phases morphology to become shorter than that of without Sr addition."
Depok: 2010
D00920
UI - Disertasi Open  Universitas Indonesia Library
cover
Fajar Nurjaman
"

Pengolahan bijih nikel menggunakan teknologi peleburan konvensional (blast furnace dan rotary kiln electric furnace) membutuhkan konsumsi energi yang besar serta keekonomisan proses dibatasi hanya untuk bijih nikel kadar tinggi (lebih dari 2% Ni). Proses reduksi selektif merupakan salah satu teknologi alternatif dalam pengolahan bijih nikel laterit (kadar rendah) menjadi konsentrat ferronikel dengan menggunakan temperatur proses (atau konsumsi energi) yang rendah. Namun, rendahnya kadar nikel dan recovery yang dihasilkan masih menjadi permasalahan pada teknologi tersebut. Dalam penelitian ini telah dipelajari mengenai pengaruh basisitas (biner, terner dan kuarterner) dalam proses reduksi selektif bijih nikel laterit (limonit dan saprolit) terhadap (1) kadar dan recovery besi-nikel dalam konsentrat, (2) transformasi fasa, (3) struktur mikro ferronikel yang terbentuk, serta (4) kinetika reaksi reduksi. Proses reduksi bijih nikel laterit dilakukan menggunakan muffle furnace dengan batubara sebagai reduktan dan sodium sulfat sebagai aditif. Dari hasil penelitian diperoleh bahwa besi dan nikel dalam senyawa magnesium silikat-hidroksida (lizardite) dalam bijih nikel saprolit memiliki tingkat reduksibilitas yang lebih rendah dibandingkan dalam bentuk senyawa oksida-hidroksida (goethite) pada bijih nikel limonit. Modifikasi basisitas dengan penambahan CaO, yaitu basisitas biner (CaO/SiO2) dengan nilai 0,1 merupakan basisitas optimum untuk bijih nikel limonit (menghasilkan konsentrat dengan kadar dan recovery nikel sebesar 6,14% dan 89,94%), sedangkan basisitas terner (CaO+MgO/SiO2) dengan nilai 0,6 untuk bijih nikel saprolit (menghasilkan konsentrat dengan kadar dan recovery nikel sebesar 16,11% dan 50,57%). Penambahan CaO mampu memecah ikatan besi dan nikel dalam senyawa silikat, dimana penambahan dalam jumlah yang optimal memberikan dampak positif terhadap peningkatan kadar dan recovery nikel. Modifikasi basisitas melalui penambahan SiO2 menyebabkan terbentuknya senyawa besi silikat, yang akan menghambat laju reduksi besi oksida, namun efektivitasnya jauh lebih rendah dibandingkan besi sulfida dikarenakan titik leburnya yang tinggi. Penambahan MgO akan menyebabkan semakin banyaknya senyawa forsterite (magnesium silikat) dan diopside yang terbentuk, dimana keduanya juga memiliki titik lebur yang lebih tinggi dibandingkan troilite. Penambahan Al2O3 akan menyebabkan terbentuknya senyawa alumino-magnesioferrite dengan tingkat reduksibilitas yang rendah. 


Nickel laterite processing by using conventional technology (blast furnace and rotary kiln electric furnace) requires a large amount of energy consumption. Its feasibility is limited to high-grade ores (more than 2% Ni). The selective reduction process is an alternative technology in low-grade nickel ores processing using low temperature (or low energy consumption). Nevertheless, the low nickel grade and recovery of the product are still the main problems in the selective reduction process. In this work, the effect of basicity (binary, ternary and quarternary) in selective reduction of lateritic nickel ore (limonite and saprolite) on (1) grade and recovery of iron-nickel in concentrate; (2) phase transformation; (3) microstructure of ferronickel; and (4) kinetic of reduction has been investigated clearly. The reduction process of nickel laterite was carried out in a muffle furnace with coal and sodium sulfate as reductant and additive, respectively. The result showed that iron and nickel in silicate magnesium-hydroxide (lizardite) in saprolite had lower reducibility than oxide-hydroxide (goethite) in limonite. Modifying the basicity with CaO addition, which was 0.1 of binary basicity (CaO/SiO2), was the optimum basicity for limonite (producing concentrate with nickel grade and recovery of 6.14% and 89.94%, respectively), while the 0.6 of ternary basicity (CaO+MgO/SiO2) for saprolite (producing concentrate with nickel grade and recovery of 16.11% and 50.57%, respectively). The CaO addition could break the iron-nickel bond in silicate magnesium. Its addition in optimal amount had positively affected the increase of nickel grade and recovery. Modifying basicity with SiO2 addition caused the formation of iron silicate, which could inhibit the reduction of iron oxide. However, it has lower effectivity than iron sulfide due to its high melting point temperature. The MgO addition would promote the formation of forsterite (magnesium silicate) and diopside, which also has high melting point than troilite. The addition of Al2O3 would generate the alumino-magnesioferrite, which had low reducibility.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Abdul Hay
"Die soldering adalah fenomena melengketnya produk cor dengan cetakan akibat reaksi interface antara aluminium cair dengan material cetakan. Akibat tingginya afinitas aluminium terhadap besi, unsur besi dari material cetakan berdifusi menuju aluminium cair membentuk lapisan intermetalik pada permukaan cetakan. Kemudian, sehingga aluminium cair menempel pada permukaan cetakan dan tertinggal setelah pelepasan hasil pengecoran. Fenomena ini mengakibatkan terjadinya kegagalan cetakan dan menurunnya kualitas permukaan hasil coran, sehingga mengarah kepada penurunan produktivitas dan peningkatan biaya produksi pengecoran. Untuk mencegah terjadinya die soldering, pembentukan lapisan intermetalik pada permukaan cetakan harus dihindari atau diminimalisir.
Penelitian ini dilakukan untuk mempelajari morfologi dan karakteristik lapisan intermetalik AlxFeySiz yang terbentuk selama proses reaksi antar muka pada saat pencelupan. Sampel uji yang digunakan yaitu baja perkakas jenis H13 hasil temper, yang dicelup pada paduan Al-7%Si dan Al-12%Si yang telah ditambah 0,1%, 0,3%, 0,5%, dan 0,7% Mn pada temperatur tahan 6800C,7000,C , dan 7200,C dengan putaran 2500, 3000, 3500 rpm.
Hasil penelitian menunjukkan dua lapisan intermetalik terbentuk pada permukaan baja perkakas H13 yakni compact intermetallic layer dan broken intermetalik layer dengan fasa intermetalik AlxFey, ketebalan lapisan broken layer rata-rata lebih tebal dibanding compact layer. Demikian pula kekerasan compact layer lebih tinggi dibandingkan broken layer. Penambahan 0.3 - 0.5 %Mn pada paduan Al-7%Si pada suhu 7200C, dan Al-12%Si dengan penambahan 0.7 %Mn dengan waktu kontak 30 menit pada suhu 7000C, menunjukkan hasil signifikan dalam menurunkan lapisan intermetalik, pada rentang kecepatan 2500 - 3000 rpm, pada penambahan 0.1 Mn. Pada suhu 7000C ketebalan lapisan intermetalik meningkat dengan meningkatnya kecepatan, dan kekerasan temper lebih tebal dibandingkan dengan kekerasan over temper.

Die soldering is the stickiness phenomenon of the mold to cast products due to the reaction between liquid aluminum interface with the mold material. The high degree of aluminum affinity toward iron led to the iron element of die material to diffuse into liquid aluminum and form an intermetallic layer on the die surface. Then, the liquid aluminum adheres on the die surface and left behind after the release of casting product. This phenomenon induce a failure in the die and decrease surface quality of the casting product, which lead to decrease in productivity and increase in casting production cost. To prevent die soldering, the forming of intermetallic layer on die surface must be avoided or minimized.
This research was conducted to study about the morphology and characteristic of AlxFeySiz intermetallic layer, which formed during interface reaction process during of dipping process. The speciment used are tool steel type H13 that has been tempered, which dipped in Al- 7% and Al-12%Si alloy with the addition of Mn as much as 0.1%, 0.3%, 0.5%, and 0.7%, holding temperature on, 6800C, 7000 and 7200C, with rotational speed 2,500, 3,000, and 3,500 rpm.
The research showed that two intermetallic layers was formed on the surface of H13 tool steel, namely compact intermetallic layer and broken intermetalik layer with AlxFey intermetallic phase. The thickness of broken layer is higher than compact layer but the hardness of compact layer is higher than broken layer. The addition of 0.3 - 0.5 Mn in the alloy Al-7% Si at a temperature of 7200 C, and Al-12% Si 0.7 Mn with the addition of 30 minutes of contact time at a temperature of 7000C significantly lower intermetallic layer, the speed range 2500-3000 rpm, the addition of 0.1 Mn , at a temperature of 7000C intermetallic layer thickness increases with increasing speed,. The Hardness of temper is higher than the hardness of over temper.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1438
UI - Disertasi Membership  Universitas Indonesia Library
cover
Silalahi, Marzuki
"[ABSTRAK
Fe-Cr adalah paduan yang memiliki ketahanan temperatur tinggi dan
potensial digunakan sebagai interkonektor pada sel bakar (SOFC=solid oxide fuel
cell). Sintesis paduan Fe-Cr terus dikembangkan untuk mendapatkan metode yang
efektif, dan efisien. Metode sintesis paduan Fe-Cr yang ada sekarang ini adalah
metode peleburan, metalurgi serbuk ataupun metode pemaduan mekanik. Metodemetode
tersebut memiliki kelemahan misalnya paduan yang tidak homogen,
terdapat oksida, proses panjang dan membutuhkan waktu lama. Untuk
meminimumkan permasalahan ini, adalah penting untuk menghasilkan paduan
mikro Fe-Cr yang memiliki kestabilan fasa dan sifat mekanis baik. Metode
ultrasonik dapat dimanfaatkan untuk sintesis paduan mikro homogen melalui
penggunaan gelombang suara ultrasonik. Gelombang suara ultrasonik
menghasilkan gelembung-gelembung kavitasi, setiap runtuhan kavitasi dapat
dianggap sebagai reaktor mikro yang mampu menghasilkan temperatur sekitar
4737 oC dan tekanan sekitar 1000 atm dan yang terbentuk dengan sangat cepat,
serta menghasilkan gelombang kejut. Dengan demikian metode ultrasonik dapat
dimanfaatkan dalam pembuatan paduan mikro Fe-Cr yang homogen serta tanpa
oksida dan diharapkan bisa mengatasi kelemahan metode pembuatan paduan
berbasis Fe saat ini. Pada penelitian ini telah dilakukan sintesis paduan mikro Fe-
Cr dengan metode ultrasonik pada frekuensi 20 kHz dalam cairan toluene.
Tahapan yang telah dilakukan adalah perlakuan ultrasonik sebagai variasi waktu
terhadap partikel prekursor (Fe, Cr), kemudian terhadap campuran partikel
precursor untuk mendapatkan paduan mikro Fe-Cr. Kemudian dilakukan
pembuatan bongkah paduan Fe-Cr dari partikel hasil perlakuan ultrasonik melalui
kompaksi tanpa lubrikan dan sintering dalam kapsul kaca kuarsa. Karakterisasi
yang dilakukan adalah menggunakan Scanning Electron Microscopy (SEM)
terhadap partikel precursor hasil rekayasa ultrasonic. Untuk partikel campuran
prekursor Fe-Cr hasil perlakuan ultrasonik karakterisasi dilakukan menggunakan
SEM-EDS (Energy Dispersive Spectroscopy), X-Ray Diffraction (XRD) disertai
analisis dengan metode Rietveld, Transmission Electron Microscopy-Selected
Area Electron Diffraction (TEM-SAED). Untuk bongkah Fe-Cr hasil konsolidasi
dengan menggunakan SEM-EDS, XRD disertai analisis dengan metode Rietveld,
pengukuran densitas sebenarnya, pengujian kekerasan Vickers. Efek perlakuan
ultrasonik terhadap partikel Fe adalah pengurangan ukuran, penyatuan, dan
aglomerasi. Setelah perlakuan ultrasonik 40 jam terjadi peningkatan ukuran
partikel Fe (>2μm). Terhadap partikel Cr memberikan efek erosi permukaan,
pengurangan ukuran dan pemecahan partikel aglomerasi. Partikel Cr aglomerasi
terurai sepenuhnya menjadi partikel Cr kecil (< 2 m) setelah 63 jam. Terhadap
campuran partikel Fe dan Cr dapat menyatukan partikel kohesif (Fe-Fe, Cr-Cr)
dan adhesif (Fe-Cr), terbentuk paduan mikro Fe-Cr seutuhnya (setelah 20 jam)
ataupun paduan mikro Fe-Cr sebagian (setelah 50 jam). Pembentukan paduan
mikro Fe-Cr diawali pada ukuran partikel Fe ataupun Cr < 2m. Bongkah paduan mikro Fe-Cr yang diperoleh adalah homogen dan tanpa oksida, dengan
karakteristik densitas melalui sintering dua tahap yaitu tipe O = 8.655 gr/cm3, tipe
B=8.179 gr/cm3, dan tipe A=8.196 gr/cm3, dan melalui proses sintering satu tahap
tipe O = 7.678 gr/cm3, tipe B=7.587gr/cm3, dan tipe A=7.092 gr/cm3. Kekerasan
bongkah Fe-Cr terbesar melalui sintering satu tahap yaitu 88 VHN adalah tipe B,
sementara terbesar dua tahap yaitu 81 VHN adalah tipe A. Proses perlakuan
ultrasonik memberikan dampak positif baik dari sisi waktu proses maupun
kualitas hasil paduan Fe-Cr. Dengan demikian metode ultrasonik bisa diandalkan
sebagai alternatif dalam pembuatan paduan berbasis Fe untuk mengatasi kendala
homogenisasi dan oksidasi yang dihadapi pada metode saat ini.;

ABSTRACT
Fe-Cr alloys have the potential for use as an interconnection material for
solid oxide fuel cell (SOFC) due to its being resistance to high temperatures.
Synthesis methods of Fe-Cr alloy continue to be developed in order to obtain a
method that is both effective and efficient. Presently, the synthesis of Fe-Cr alloys
include the casting, the powder metallurgy, and the mechanical alloying method.
These methods have several drawbacks such as inhomogeneity in the resulting
products, oxidation, and require a very time-consuming process to accomplish. In
order to minimize this problem, it is important to produce Fe-Cr microalloys. Fe-
Cr microalloys exhibit phase stability and good mechanical properties. Ultrasonic
methods can be used in the synthesis of homogeneous microalloys by employing
the ultrasonic sound waves. Ultrasonic sound waves will generate cavitation
bubbles. Any cavitation collapse can be considered as a micro reactor in which a
temperature of about 4737 oC and a pressure of about 1000 atm a very rapidly
created, thereby generating a shock wave. Thus, the ultrasonic method can be
used in producing homogeneous and free-oxide Fe-Cr microalloys and can be
expected to overcome the limitations imposed by the current methods. In this
work the formation of Fe-Cr microalloys by ultrasonic treatment at a frequency of
20 kHz in toluene liquid is presented. In the synthesis procedure, the procedure
steps followed were: (1) the treatment of precursor particles (Fe, Cr) through
ultrasonic method with a time-variation, followed by (2) the same time-varying
ultrasonic treatment on the admixture of these specially prepared precursor
particles in order to obtain the Fe-Cr microalloys, and (3) finally, the lubricantless
compaction method was employed on these precursor particles admixture
followed by sintering process inside quartz tubes to obtain a bulk of Fe-Cr alloy.
Observations of the specially prepared precursor particles using ultrasonic
technique were carried out by scanning electron microscopy (SEM) method.
Observation of the precursor mixture of Fe-Cr particles mixture treated
ultrasonically was performed using a SEM-EDS (energy-dispersive spectroscopy)
apparatus, a X-Ray diffractometer and accompanied by the Rietveld analysis
method, and transmission electron microscopy (TEM)-selected area electron
diffraction (SAED) apparatus. The bulk of Fe-Cr alloy were observed using SEMEDS,
XRD accompanied by analysis by the Rietveld method, true density
measurement, and Vickers microhardness testing. Ultrasonic treatment has caused
Fe particles to form agglomerations, an interparticles neck formation, and a fusing
among the particles. The size of the Fe particles increased (>2μm) after 40 hours
treatment. The agglomerated Cr particles experienced fragmentation, surface
erosion, and reduction of particle size. The agglometrated Cr particles fully
disintegrated into Cr microparticles (<2μm) after 63 hours treatment. The mixture
of Fe-Cr forming cohesive (Fe-Fe, Cr-Cr) and adhesive (Fe-Cr) particles, forming
completely (after ultrasonic treatment for 20 hours) and partially (after ultrasonic
treatment for 50 hours) Fe-Cr microalloys. The complete formation of Fe-Cr microalloy was possible with an equal particle size of the precursor Fe and Cr
(approximately <2 μm). The bulk of Fe-Cr alloy results are homogenous and
oxide-free. For two-step sintering, its density (in gr/cm3 unit) is 8.655 for type O,
is 8.179 for type B, and is 8.196 for type A, and for one-step sintering its density
is 7.678 for type O, is 7.587 for type B, and is 7.092 for type A. The greatest
microhardness number of 88 VHN is of type B (one-step sintering), and of 81
VHN is of type A (two-step sintering). The ultrasonic treatment process has a
positive impact, with respect to both of quality and time-consumption to finish the
Fe-Cr alloying process. Therefore the ultrasonic method can be relied upon as an
alternative method in the production of Fe-based alloys to solve problems in
homogenization and oxidation encountered in current methods;Fe-Cr alloys have the potential for use as an interconnection material for
solid oxide fuel cell (SOFC) due to its being resistance to high temperatures.
Synthesis methods of Fe-Cr alloy continue to be developed in order to obtain a
method that is both effective and efficient. Presently, the synthesis of Fe-Cr alloys
include the casting, the powder metallurgy, and the mechanical alloying method.
These methods have several drawbacks such as inhomogeneity in the resulting
products, oxidation, and require a very time-consuming process to accomplish. In
order to minimize this problem, it is important to produce Fe-Cr microalloys. Fe-
Cr microalloys exhibit phase stability and good mechanical properties. Ultrasonic
methods can be used in the synthesis of homogeneous microalloys by employing
the ultrasonic sound waves. Ultrasonic sound waves will generate cavitation
bubbles. Any cavitation collapse can be considered as a micro reactor in which a
temperature of about 4737 oC and a pressure of about 1000 atm a very rapidly
created, thereby generating a shock wave. Thus, the ultrasonic method can be
used in producing homogeneous and free-oxide Fe-Cr microalloys and can be
expected to overcome the limitations imposed by the current methods. In this
work the formation of Fe-Cr microalloys by ultrasonic treatment at a frequency of
20 kHz in toluene liquid is presented. In the synthesis procedure, the procedure
steps followed were: (1) the treatment of precursor particles (Fe, Cr) through
ultrasonic method with a time-variation, followed by (2) the same time-varying
ultrasonic treatment on the admixture of these specially prepared precursor
particles in order to obtain the Fe-Cr microalloys, and (3) finally, the lubricantless
compaction method was employed on these precursor particles admixture
followed by sintering process inside quartz tubes to obtain a bulk of Fe-Cr alloy.
Observations of the specially prepared precursor particles using ultrasonic
technique were carried out by scanning electron microscopy (SEM) method.
Observation of the precursor mixture of Fe-Cr particles mixture treated
ultrasonically was performed using a SEM-EDS (energy-dispersive spectroscopy)
apparatus, a X-Ray diffractometer and accompanied by the Rietveld analysis
method, and transmission electron microscopy (TEM)-selected area electron
diffraction (SAED) apparatus. The bulk of Fe-Cr alloy were observed using SEMEDS,
XRD accompanied by analysis by the Rietveld method, true density
measurement, and Vickers microhardness testing. Ultrasonic treatment has caused
Fe particles to form agglomerations, an interparticles neck formation, and a fusing
among the particles. The size of the Fe particles increased (>2μm) after 40 hours
treatment. The agglomerated Cr particles experienced fragmentation, surface
erosion, and reduction of particle size. The agglometrated Cr particles fully
disintegrated into Cr microparticles (<2μm) after 63 hours treatment. The mixture
of Fe-Cr forming cohesive (Fe-Fe, Cr-Cr) and adhesive (Fe-Cr) particles, forming
completely (after ultrasonic treatment for 20 hours) and partially (after ultrasonic
treatment for 50 hours) Fe-Cr microalloys. The complete formation of Fe-Cr microalloy was possible with an equal particle size of the precursor Fe and Cr
(approximately <2 μm). The bulk of Fe-Cr alloy results are homogenous and
oxide-free. For two-step sintering, its density (in gr/cm3 unit) is 8.655 for type O,
is 8.179 for type B, and is 8.196 for type A, and for one-step sintering its density
is 7.678 for type O, is 7.587 for type B, and is 7.092 for type A. The greatest
microhardness number of 88 VHN is of type B (one-step sintering), and of 81
VHN is of type A (two-step sintering). The ultrasonic treatment process has a
positive impact, with respect to both of quality and time-consumption to finish the
Fe-Cr alloying process. Therefore the ultrasonic method can be relied upon as an
alternative method in the production of Fe-based alloys to solve problems in
homogenization and oxidation encountered in current methods, Fe-Cr alloys have the potential for use as an interconnection material for
solid oxide fuel cell (SOFC) due to its being resistance to high temperatures.
Synthesis methods of Fe-Cr alloy continue to be developed in order to obtain a
method that is both effective and efficient. Presently, the synthesis of Fe-Cr alloys
include the casting, the powder metallurgy, and the mechanical alloying method.
These methods have several drawbacks such as inhomogeneity in the resulting
products, oxidation, and require a very time-consuming process to accomplish. In
order to minimize this problem, it is important to produce Fe-Cr microalloys. Fe-
Cr microalloys exhibit phase stability and good mechanical properties. Ultrasonic
methods can be used in the synthesis of homogeneous microalloys by employing
the ultrasonic sound waves. Ultrasonic sound waves will generate cavitation
bubbles. Any cavitation collapse can be considered as a micro reactor in which a
temperature of about 4737 oC and a pressure of about 1000 atm a very rapidly
created, thereby generating a shock wave. Thus, the ultrasonic method can be
used in producing homogeneous and free-oxide Fe-Cr microalloys and can be
expected to overcome the limitations imposed by the current methods. In this
work the formation of Fe-Cr microalloys by ultrasonic treatment at a frequency of
20 kHz in toluene liquid is presented. In the synthesis procedure, the procedure
steps followed were: (1) the treatment of precursor particles (Fe, Cr) through
ultrasonic method with a time-variation, followed by (2) the same time-varying
ultrasonic treatment on the admixture of these specially prepared precursor
particles in order to obtain the Fe-Cr microalloys, and (3) finally, the lubricantless
compaction method was employed on these precursor particles admixture
followed by sintering process inside quartz tubes to obtain a bulk of Fe-Cr alloy.
Observations of the specially prepared precursor particles using ultrasonic
technique were carried out by scanning electron microscopy (SEM) method.
Observation of the precursor mixture of Fe-Cr particles mixture treated
ultrasonically was performed using a SEM-EDS (energy-dispersive spectroscopy)
apparatus, a X-Ray diffractometer and accompanied by the Rietveld analysis
method, and transmission electron microscopy (TEM)-selected area electron
diffraction (SAED) apparatus. The bulk of Fe-Cr alloy were observed using SEMEDS,
XRD accompanied by analysis by the Rietveld method, true density
measurement, and Vickers microhardness testing. Ultrasonic treatment has caused
Fe particles to form agglomerations, an interparticles neck formation, and a fusing
among the particles. The size of the Fe particles increased (>2μm) after 40 hours
treatment. The agglomerated Cr particles experienced fragmentation, surface
erosion, and reduction of particle size. The agglometrated Cr particles fully
disintegrated into Cr microparticles (<2μm) after 63 hours treatment. The mixture
of Fe-Cr forming cohesive (Fe-Fe, Cr-Cr) and adhesive (Fe-Cr) particles, forming
completely (after ultrasonic treatment for 20 hours) and partially (after ultrasonic
treatment for 50 hours) Fe-Cr microalloys. The complete formation of Fe-Cr microalloy was possible with an equal particle size of the precursor Fe and Cr
(approximately <2 μm). The bulk of Fe-Cr alloy results are homogenous and
oxide-free. For two-step sintering, its density (in gr/cm3 unit) is 8.655 for type O,
is 8.179 for type B, and is 8.196 for type A, and for one-step sintering its density
is 7.678 for type O, is 7.587 for type B, and is 7.092 for type A. The greatest
microhardness number of 88 VHN is of type B (one-step sintering), and of 81
VHN is of type A (two-step sintering). The ultrasonic treatment process has a
positive impact, with respect to both of quality and time-consumption to finish the
Fe-Cr alloying process. Therefore the ultrasonic method can be relied upon as an
alternative method in the production of Fe-based alloys to solve problems in
homogenization and oxidation encountered in current methods]"
2015
D2072
UI - Disertasi Membership  Universitas Indonesia Library
cover
Cahya Sutowo
"Disertasi ini membahas mengenai pengembangan paduan titanium berbasis Ti-Mo-Nb untuk mendukung kebutuhan akan material implan medis. Perekonomian yang meningkat dan meningkatnya populasi merupakan kombinasi yang menarik di mana terdapat potensi kebutuhan material implan medis. Peningkatan populasi ini berdampak pada peningkatan penduduk usia lanjut dan penyakit degeneratif seperti osteoporosis. Saat ini penggunaan paduan Ti6Al4V telah banyak digunakan sebagai material implan medis, namun permasalahannya adalah kandungan logam Al dan V yang berpotensi berbahaya bagi tubuh manusia serta nilai modulus elastisitas yang jauh lebih tinggi dibandingkan dengan tulang sehingga mendorong peneliti untuk mengembangkan paduan titanium baru untuk menggantikan Ti6Al4V. Paduan titanium β (beta) berbasis Ti-Mo-Nb dengan penambahan Sn dan Mn ini merupakan paduan yang aman digunakan dan memiliki modulus elastisitas yang lebih rendah dibandingkan Ti6Al4V.
Paduan Ti-Mo-Nb-Sn-Mn dibuat melalui peleburan menggunakan electric arc vaccuum furnace pada lingkungan inert gas argon. Ingot hasil peleburan dihomogenisasi pada temperatur 1100 oC kondisi inert selama 7 jam dilanjutkan dengan pendinginan air. Selanjutnya dilakukan karakterisasi struktur mikro, sifat mekanis, sifat korosi dan in-vitro untuk mengetahui sifat–sifat yang dihasilkan sesuai aplikasi. Desain paduan Ti-6Mo-6Nb-8Sn-4Mn merupakan komposisi optimum yang dicapai. Paduan ini memiliki modulus elastisitas 92,4 GPa, laju korosi 0,00160 mmpy dan visibilitas sel mencapai 100%. Jadi dapat disimpulkan bahwa sifat mekanik, perilaku korosi dan hasil uji sel in-vitro menunjukkan bahwa paduan ini lebih baik daripada paduan komersial Ti6Al4V dan merupakan kandidat yang menarik untuk aplikasi material implant medis.

This dissertation discusses the development of Ti-Mo-Nb-based titanium alloys to support the need for medical implant materials. An increasing economy and a growing population is an attractive combination where there is a potential demand for medical implant materials. This population increase has an impact on the increase in the elderly population and degenerative diseases such as osteoporosis. Currently, the use of Ti6Al4V alloys has been widely used as medical implant materials. However, the problem is the content of Al and V metals which are potentially harmful to the human body, and the value of the modulus of elasticity is much higher than that of human bone, thus encouraging researchers to develop new titanium implant alloys to replace Ti6Al4V. Ti-Mo-Nb alloy with the addition of Sn and Mn is an element that is safe to use and has a lower modulus of elasticity than Ti6Al4V.
Ti-Mo-Nb-Sn-Mn alloys are made by electric arc vaccuum furnace in an inert argon gas atmosphere. The ingot resulting was homogenized at a temperature of 1100 °C for 7 hours in an inert atmosphere of argon gas, followed by water quenching. Microstructure characterization, mechanical and corrosion properties, and in-vitro were carried out to determine the suitability of the resulting properties for biomedical applications. Alloy Ti-6Mo-6Nb-8Sn-4Mn is the optimum composition achieved. This alloy has an elastic modulus of 92.4 GPa, a corrosion rate of 0.00160 mmpy and a visibility cell of 100%. So it can be concluded that the mechanical properties, corrosion behavior, and in vitro cell test results indicate that this alloy is better than the commercial alloy Ti6Al4V and is an attractive candidate for medical implant material applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Iwan Setyadi
"Beberapa dekade ini pengembangan magnesium biodegradable untuk implan ortopedi sementara (temporary orthopedic implants) menarik minat periset. Magnesium (Mg) merupakan logam teringan (1,74-2,0 g/cm3), bersifat biokompatibel dan memiliki modulus elastisitas yang mirip dengan tulang. Beberapa upaya terus dilakukan dalam hal perbaikan sifat mekanik, kemunculan gas hidrogen dan penurunan laju degradasi terutama melalui pembuatan paduan baru, modifikasi permukaan dan pembuatan struktur baru. Adanya keselarasan antara kekuatan dan laju degradasi serta sifat biokompatibilitas Mg yang terjaga selama proses penyembuhan tulang merupakan tujuan akhir yang hendak dicapai. Disertasi ini fokus pada salah satu upaya peningkatan kinerja magnesium melalui pengembangan struktur baru dalam bentuk komposit Magnesium-Carbonate Apatite (Mg-xCA) yang berbasis serbuk. Carbonate Apatite (CA) disamping dijadikan sebagai penguat (reinforcement) guna memperbaiki sifat mekanik, juga untuk memperbaiki laju degradasi dan sifat biokompatibilitas. CA dianggap lebih mudah diserap osteoblast, mempercepat pembentukan jaringan dan penyembuhan tulang (bersifat osteoinductive dan osteoconductive) tanpa membentuk fibrotic tissue dibandingkan hidoxyapatite (HA). CA yang digunakan merupakan produk lokal. Komposisi Mg-xCA dibuat dengan variasi kandungan CA (x = 0, 5, 10 dan 15% berat) dan waktu milling (3, 5 dan 7 jam). Fabrikasi Mg-xCA dilakukan melalui tahapan pemadatan awal dengan kompaksi hangat (WC) dan dilanjutkan dengan proses pemadatan lanjut, masing-masing melalui proses sinter, proses ekstrusi dan proses equal channel angular pressing (ECAP) 1 pass untuk mendapatkan hasil optimal. Karakterisasi meliputi uji densitas relatif, uji sifat mekanis, uji korosi, uji biokompatibel (indirect cytotoxicity), pengamatan strukturmikro (OM), SEM-EDS-Mapping, micro XRF dan XRD. Hasil studi menunjukkan bahwa waktu milling 5 jam dapat memberikan padatan awal yang optimal melalui proses kompaksi hangat. Karakteristik prototipe Mg-xCA paling baik diperoleh dari hasil pemadatan lanjut dengan proses ekstrusi dengan rasio ekstrusi (R) 4. Rod yang dihasilkan memiliki ϕ 10 mm, panjang maks 100 mm dan bisa diiris sampai ketebalan 1 mm dengan distribusi kekerasan relatif seragam. Penambahan dan peningkatan kandungan CA menaikkan kekerasan, kekuatan tarik dan kekuatan tekan, memperbaiki laju korosi dan sifat toksik, namun menurunkan densitas relatif dibanding Mg murni (Mg-0CA). Semua komposisi bersifat biokompatibilitas (tidak beracun). Laju korosi terendah didapatkan pada Mg-5CA sebesar 1,92 mm/th (Icorr: 8.560E-05 A/cm2), dimana lebih kecil dari Icorr Mg-xHA hasil microwave sintering (berkisar 1,00E-4 - 2,51E-4 A/cm2) atau laju korosi Mg-5HA ( ± 5 mm/th) dengan metode uji pencelupan. Sebagian sifat mekanis (hardness, ultimate tensile stress, elongasi dan flexural stress) komposit memenuhi karakteristik tulang tengkorak manusia (human cranial bone) terutama Mg-15CA dan Mg-10CA, namun yield strength dan young modulus masih perlu ditingkatkan. Komposit Mg-xCA sangat prospek untuk terus dikembangkan sebagai kandidat material implan ortopedi.

In recent decades the development of biodegradable magnesium for temporary orthopedic implants has been of interest to researchers. Magnesium is the lightest metal (1.74 - 2.0 g/cm3), biocompatible and it has a modulus of elasticity similar to bone. Efforts are being made to improve mechanical properties, the emergence of hydrogen gas and the rate of degradation, especially through the manufacture of new alloys, surface modifications and the creation of new structures. The harmony between the strength and the rate of degradation as well as the maintained properties of Mg biocompatibility during the bone healing process is the final goal to be achieved. This dissertation focuses on one of the efforts to improve the performance of magnesium through the development of a new structure in the form of a powder-based Magnesium-Carbonate Apatite (Mg-xCA) composite. Carbonate apatite (CA) besides being used as a reinforcement to improve mechanical properties, also to improve the rate of degradation and biocompatibility properties. CA is considered more easily absorbed by osteoblasts, accelerates tissue formation and bone healing (osteoinductive and osteoconductive) without forming fibrotic tissue compared to hydoxyapatite (HA). The CA used is a local product. The composition of Mg-xCA was made by varying the content of CA (x = 0, 5, 10 and 15% by weight) and milling time (3, 5 and 7 hours). Mg-xCA fabrication was performed through the initial compaction stage with warm compaction (WC) and continued with a further compaction process, each through the sintering process, the extrusion process and the 1 pass equal channel angular pressing (ECAP) process to obtain optimal results. Characterization includes relative density test, mechanical properties test, corrosion test, biocompatible test (indirect cytotoxicity), microstructure observation (OM), SEM-EDS-Mapping, micro XRF and XRD. The results show that the 5 hour milling time can provide optimal initial solids through a warm compaction process. The best characteristic of the Mg-xCA prototype is obtained from the results of further compaction by extrusion process with extrusion ratio (R) 4. The resulting rod has ϕ 10 mm, max length 100 mm and it can be sliced to a thickness of 1 mm with a relatively uniform hardness distribution. The addition and increase of CA content increases the hardness, tensile strength and compressive strength, improves corrosion rates and toxic properties, but reduces the relative density compared to pure Mg (Mg-0CA). All compositions are biocompatible (non-toxic). The lowest corrosion rate was obtained at Mg-5CA of 1.92 mm / year (Icorr: 8.560E-05 A/cm2), which it is smaller than Icorr Mg-xHA from microwave sintering (ranging from 1.00E-4 - 2.51E-4 A/cm2) or Mg-5HA corrosion rate (± 5 mm/yr) by immersion test method. Some of the mechanical properties (hardness, ultimate tensile strength, elongation and flexural stress) of the composite meet the characteristics of human cranial bone, especially Mg-15CA and Mg-10CA, but yield strength and young modulus still need to be improved. Mg-xCA composites are very prospective for further development as candidates for orthopedic implant materials."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Is Prima Nanda
"ABSTRAK
Telah dilakukan penelitian pengaruh penambahan Fe dan Sr berhadap perubahan struktur mikro paduan hipoeutektik Al-7% Si dan paduan eutektik Al-11% Si terutama terhadap pembentukan fasa intermetalik dan nilai fluiditas paduan dengan metode vakum (vacum suction test). Perancangan dan pembuatan alat uji fluiditas metode vakum ini dilakukan untuk meminimalisasi kekurangan-kekurangan yang didapat dari pengujian fluiditas metode spiral dan metode lainnya. Hasil perancangan dan pembuatan alat ini untuk mendapatkan pengukuran temperatur dan kecepatan tuang yang lebih presisi pada saat melakukan pengujian fluiditas. Penelitian yang telah dilakukan oleh para peneliti sebelumnya, beberapa telah meneliti penggunaan Sr sebagai modifier, akan tetapi belum ada penelitian yang memfokuskan pada keterkaitan antara Sr sebagai modifier dan nilai fluditas dari paduan hipoeutektik Al-7% Si dan paduan eutektik Al-11% Si menggunakan metode vakum. Penelitian yang dilakukan pada prinsipnya dibagi ke dalam beberapa bagian, yaitu pembuatan peralatan uji fluiditas metode vakum dan validitasnya, pembuatan master alloy hipoeutektik dan eutektik serta karakterisasinya, dan rekayasa penambahan unsur Fe dan Sr pada kedua paduan untuk melihat pengaruh penambahan Fe dan Sr terhadap pembentukan fasa intermetalik dan nilai fluiditas kedua paduan. Karakterisasi yang dilakukan adalah analisis struktur mikro, terutama fasa intermetalik yang terbentuk pada paduan Al-7% Si dan Al-11% Si secara kuantitatif dan kualitatif, menggunakan mikrosokop elektron yang dilengkapi spektroskopi sinar-X (SEM/EDX) dan difraksi sinar-X (XRD). Dalam pembuatan peralatan uji fluiditas metode vakum, pengujian validasi dengan menambahkan modifier Sr dan grain refiner Al5TiB pada paduan komersial ADC12 didapatkan hasil yang sesuai dengan literatur. Penambahan 0,03% Sr memberikan nilai fluiditas yang paling baik, sedangkan penambahan 0,15% Al5TiB menghasilkan butir yang halus dan nilai fluiditas yang paling baik. Sementara itu, waktu proses degassing sangat menentukan nilai fluiditas, karena semakin lama waktu degassing yang diberikan akan meningkatkan nilai fluiditas paduan komersial ADC12. Hal ini dapat dipahami karena proses degassing akan menarik gas hidrogen yang ada dalam logam cair, dimana keberadaan gas ini akan menyebabkan cacat pada produk cor. Dari hasil pengujian dan validasi variasi jenis pipa dan tekanan didapatkan bahwa, dalam penelitian ini, pipa tembaga dengan tekanan 8 inHg yang paling baik untuk digunakan. Dari hasil pengujian fluiditas pada paduan Al-7% Si yang ditambahkan Fe, didapatkan bahwa semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas semakin turun. Hal ini dapat dipahami karena Fe akan membentuk senyawa intermetalik Al-Fe-Si yang mengganggu proses mampu alir paduan aluminium dimana semakin banyaknya fasa intermetalik yang terbentuk akan semakin menurunkan fluiditasnya. Pengujian fluiditas paduan Al-7% Si yang ditambahkan 1,2% Fe; 1,4% Fe; dan 1,6% Fe serta 0,015% Sr- 0,045% Sr memberikan hasil bahwa dengan semakin tingginya temperatur tuang maka nilai fluiditas akan semakin tinggi pada semua komposisi. Pada penambahan 0,03% Sr didapatkan nilai fluiditas yang paling tinggi pada setiap komposisi; dalam hal ini penambahan 0,03% Sr akan memodifikasi silikon primer menjadi lebih bulat dan mengubah morfologi fasa intermetalik menjadi lebih pendek. Dengan bertambahnya kadar Fe maka ukuran panjang dan lebar maupun fraksi luas intermetalik fasa intermetalik ?-Al5FeSi akan semakin meningkat. Pada paduan Al-7% Si didapatkan fasa intermetalik yang paling panjang pada penambahan 1,6% Fe yaitu 22,21 ?m dan yang paling pendek pada penambahan 1,2% Fe yaitu 9,66 _m. Untuk fraksi luas intermetalik yang terbentuk, dengan penambahan Fe yang semakin tinggi, akan menghasilkan fraksi luas intermetalik yang semakin besar. Pada penambahan 1,2% Fe menghasilkan fraksi luas intermetalik 3,67%, sedangkan pada penambahan 1,4% Fe dan1,6% Fe masing-masingnya menghasilkan fraksi luas 4,03% dan 5,23%. Dari hasil pengujian fluiditas pada paduan Al-11% Si yang ditambahkan Fe, juga didapatkan bahwa semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas semakin turun. Sedangkan pengujian fluiditas paduan Al-11%Si yang ditambahkan Fe dan Sr yang bervariasi juga memberikan hasil yang sama seperti pada paduan Al-7% Si, dimana dengan semakin tinggi kadar Fe yang ditambahkan maka nilai fluiditas paduan akan turun, sedangkan nilai fluiditas yang paling tinggi diberikan oleh penambahan Sr sebesar 0,03%. Pada penambahan 1% Fe memberikan fasa intermetalik yang paling panjang yaitu 50,25 _m, sedangkan fasa intermetalik yang paling pendek diberikan oleh penambahan 0,6 % Fe yaitu 21,3 _m. Pada paduan Al-11% Si umumnya dengan penambahan Fe yang semakin tinggi, akan menghasilkan fraksi luas intermetalik yang semakin besar. Pada penambahan 0,6% Fe menghasilkan fraksi luas intermetalik 1,01%, sedangkan pada penambahan 0,8% Fe dan 1% Fe masing-masingnya menghasilkan fraksi luas 1,16% dan 2,26%. Hasil pengujian fluiditas, baik pada paduan Al-7% Si maupun pada paduan Al-11 %Si memperlihatkan adanya kecendrungan bahwa dengan bertambahnya kadar Fe, akan semakin menurunkan nilai fluiditasnya; akan tetapi apabila ditambahkan dengan Sr, nilai fluiditasnya akan kembali naik. Perubahan nilai fluiditas ini didukung oleh morfologi struktur mikro dari hasil pengujian SEM yang memperlihatkan adanya matrik aluminium, struktur silikon, dan fasa intermetalik. Komposisi yang didapatkan melalui perkiraan hasil EDX diperkuat dengan data dari hasil pengujian XRD yang kemudian mengidentifikasi akan adanya fasa intermetalik ?dan ? . Akan tetapi, jika pada kedua paduan ini ditambahkan modifier Sr maka terjadi perubahan morfologi fasa intermetalik. Dari hal ini dapat disimpulkan bahwa Sr berfungsi mengubah struktur mikro fasa intermetalik yang panjang menjadi lebih pendek dan bulat sehingga akan menaikkan nilai fluiditas dari kedua paduan ini. Pada penambahan 0,03% Sr didapatkan nilai fluiditas paling baik pada setiap komposisi , dalam hal ini penambahan 0,03% Sr akan memodifikasi silikon primer menjadi lebih bulat dan mengubah morfologi fasa intermetalik menjadi lebih pendek.

ABSTRACT
The effect of Fe and Sr addition on the intermetallic phase(s) formation and fluidity of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys has been investigated. Vacuum suction test equipment development for fluidity test was designed to minimize the disadvantages from spiral and other fluidity test methods. This fluidity test design was aiming at obtaining a precise temperature measurement and pouring rate in the fluidity test. Many researchers have investigated the role of Sr as a modifier but none of them focused in the relationship of Sr as a modifier and its effect on the fluidity of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys by using vacuum suction test. In this investigation, the work is divided into several sections, i.e. vacuum suction test equipment designing and development for fluidity test and its validity, synthesis of the hypoeutectic Al-7% Si and eutectic Al-11% Si alloys (master alloys) and their characterization, and effect of Fe and Sr elements addition into the master alloys on the intermetalic phase(s) formation and fluidity. The characterization that has been carried out including microstructure by using electron microscope (SEM/EDX) and X-ray diffraction (XRD). In the test equipment designing and development for fluidity test, validation test on the addition of Sr and grain refiner Al5TiB into commercial ADC12 alloy gives the same result as in literatures, in which the addition of 0.03% Sr gives the best performance while addition of 0.15% Al5TiB results in fine grain and the best fluidity. At the same time, degassing time affects the flowability greatly in which the more time for degassing the better the fluidity of the commercial ADC12 alloy. This can be understood since the degassing process will reduce the hydrogen gas in the melt, which may cause defect in the casting product. The validation test on the vacuum suction equipment also shows that, in this investigation, copper tube with a pressure of 8 inHg provides the best performance. The fluidity test on the Al-7% Si alloy with the addition of Fe shows that the increasing of Fe content results in decreasing of the fluidity. This can be understood since Fe will form an intermetalic phase of Al-Fe-Si, which will interfere and further slow down the flowability of aluminum alloys. At the same time, addition of 1.2% Fe; 1.4% Fe and 1.6% Fe, and 0.015% Sr ? 0.045% Sr shows that the flowability of the alloy increases with the increasing of temperature at all compositions. In this investigation, addition of 0.03% Sr results in the highest fluidity; in this instance, addition of 0.03% Sr will modify lath primary silicon intermetallic phase to become more round and changes the intermetallic phase morphology shorter than that of without Sr addition. The formation of intermetallic phase ?-Al5FeSi within Al-7% Si alloy increase with Fe content. This can be understood since the ability of Sr to modify the intermetallic phase decreases with the increase of Fe content. With the increase of Fe content, the fraction of ?-Al5FeSi increases both in length and area fraction of the intermetallic phase. In this investigation, the intermetallic phase with the maximum length of 22.2 _m occurs at the addition of 1.6% Fe while the intermetallic phase with the shortest length of 9.66 _m occurs at the addition of 1.2% Fe. In the event that Sr element is added into the alloys containing these Fe contents, the size of the intermetallic phases changes with the average length of 11.3 _m. In general, the increasing content of Fe results in the increasing area fraction of the intermetallic phase. Addition of 1.2% Fe results in intermetallic area fraction of 3.67%, whilst addition of 1.4% Fe and 1.6% Fe results in the intermetallic area fractions of 4.03% and 5.23% respectively. Fluidity test on the Al-11 % Si alloy with the addition of Fe also shows that the more Fe content the less the fluidity of the alloy. At the same time, fluidity test on the Al-11% Si alloy with the addition of various Fe and Sr compositions also results in the same way as that of Al-7% Si alloy, in which the increasing of Fe content results in decreasing of the fluidity, while the highest fluidity is given by the addition of 0.03% Sr. The formation of intermetallic phase ?-Al5FeSi within Al-11% Si alloy also increase with Fe content. With the increase of Fe content, the fraction of ?-Al5FeSi increases both in length and area fraction of the intermetallic phase, in which the intermetallic phase with the maximum length of 50,25 _m occurs at the addition of 1.0% Fe while the intermetallic phase with the shortest length of 21,3 _m occurs at the addition of 0.6% Fe. Addition of 0.6% of Fe results in intermetallic area fraction of 1,01%; while addition of 0.8% and 1.0% results in area fractions of 1.16% and 2.26%, respectively. The fluidity tests of both Al-7% Si and Al-11% Si alloys show the same trend in which the more Fe content the less the fluidity, while addition of Sr increases the fluidity. The change in this fluidity result is supported by morphology and microstructure of the alloys taken from the SEM, which shows an aluminum matrix, silicon structure, and intermetallic phases. The predicted compositions from EDX analysis are supported by XRD data analysis, which identifies the presence of the intermetallic phases of ? and ?. However, in the event that Sr is added into these two alloys, the intermetallic phases will be change. It can be concluded that Sr has an effect on the microstructure of the intermetallic phases, in which the addition of 0.03% Sr gives the best fluidity at all compositions; in this instance, addition of 0.03% Sr modifies primary lath silicon into more round and changes the intermetallic phases morphology to become shorter than that of without Sr addition."
Depok: 2010
D1161
UI - Disertasi Open  Universitas Indonesia Library