Plasma electrolytic oxidation (PEO) merupakan metode konversi permukaan logam menjadi lapisan oksida dengan bantuan plasma yang bertujuan untuk meningkatkan sifat mekanik permukaan dan ketahanan korosi logam. Retakan dan pori menurunkan ketahanan korosi dan sifat mekanik lapisan. Dalam penelitian ini digunakan zat aditif SiO2 dan metode post-alkali treatment pada lapisan PEO yang ditumbuhkan pada paduan magnesium AZ31 dan commercially pure titanium (CP-Ti). PEO dilakukan di dalam larutan 95 g/l Na3PO4 + 2 g/l KOH menggunakan rapat arus DC sebesar 300 A.m-2 selama 10 menit. NP-SiO2 sebanyak 2 g/l ditambahkan di dalam larutan PEO. Setelah logam terlapisi, post-alkali treatment dilakukan di dalam larutan 0,5 M NaOH pada suhu 80 ºC selama 30 menit. Morfologi permukaan dan kandungan unsur lapisan dianalisis menggunakan SEM-EDS dan XPS. Komposisi fasa kristal diteliti menggunakan X-ray Difraction (XRD). Sifat mekanik lapisan PEO diuji dengan metode vickers microhardness dan ketahanan aus dievaluasi menggunakan metode Ogoshi. Sifat korosi dianalisis dengan uji polarisasi, EIS, dan uji rendam. Sifat bioaktivitas diteliti dengan cara perendaman sampel dalam larutan SBF. Hasil penelitian menunjukkan penambahan aditif SiO2 dan post-alkali treatment dapat meningkatkan ketahanan korosi dan sifat mekanik lapisan PEO pada logam Mg dan Ti. Pada PEO-Mg, lapisan PEO/SiO2+AT memiliki nilai rapat arus korosi paling rendah dan nilai kekerasan paling tinggi dibandingkan dengan sampel lainnya yaitu berturut-turut 7,34x10-7 A.cm-2 dan 359 HV. Tren yang sama juga dihasilkan pada PEO-Ti, lapisan PEO/SiO2+AT memiliki nilai rapat arus korosi relatif rendah dan nilai kekerasan paling tinggi dibandingkan dengan sampel lainnya yaitu berturut-turut 3,4x10-9 A.cm-2 dan 305 HV.
Lapisan anodik yang ditumbuhkan pada paduan AA7075 dengan metode hard anodizing tidak seragam karena lambatnya reaksi oksidasi pada presipitat. Dalam penelitian ini, pengaruh penambahan Etilen Glikol (EG) sebagai zat aditif pada elektrolit dalam proses hard anodizing pada logam paduan AA7075 diteliti melalui karakterisasi morfologi, sifat mekanik dan sifat korosi lapisan anodizing yang dihasilkan. Uji korosi metode elektrokimia pada larutan 3% NaCl + 1% HCl. Senyawa EG dipilih karena umum digunakan sebagai zat antibeku pada industri logam dan memiliki sifat inhibitor korosi dalam sistem pendingin. Penambahan EG pada elektrolit meningkatkan laju reaksi oksidasi dari presipitat yang terdapat pada substrat, sehingga menghasilkan struktur lapisan yang lebih seragam di sepanjang antarmuka oksida-logam. Namun konsumsi energi pada reaksi oksidasi presipitat menyebabkan berkurangnya oksidasi pada matrix aluminium sehingga lapisan yang dihasilkan menjadi lebih tipis. Selain itu, pelepasan gas oksigen yang terjadi selama proses oksidasi presipitat terjebak dalam lapisan membentuk pori sehingga kekerasan menurun dari 196,2 HV menjadi 117,8; 115,2; dan 107,7 HV masing-masing dengan penambahan 10, 20, dan 30 % EG. Ketahanan korosi lapisan anodik menjadi 30 mV lebih tinggi, nilai potensial korosi menjadi 10 mV lebih positif, arus korosi menjadi 80 µA/cm2 lebih rendah, dan nilai resistansi polarisasi naik 100 Ω lebih tinggi dengan penambahan 10% EG sedangkan pada konsentrasi EG yang lebih tinggi menurunkan ketahanan korosi lapisan. EG yang optimum untuk menghasilkan lapisan dengan sifat mekanik dan ketahanan korosi yang baik adalah 10%. Lapisan anodik yang mengandung EG sensitif terhadap hydrothermal sealing.
The anodic layer grown on AA7075 alloy with the hard-anodizing method is not uniform because of the slow oxidation reaction at precipitate. In this study, the effect of adding Ethylene Glycol (EG) as an additive to electrolytes in the process of hard anodizing on alloy metals AA7075 was examined through morphological characterization, mechanical properties and corrosion properties of the anodizing layer produced. Electrochemical method corrosion test on a 3% NaCl + 1% HCl solution. EG compounds are chosen because they are commonly used as antifreeze substances in the metal industry and have corrosion inhibitor properties in the cooling system. The addition of EG to electrolytes increases the rate of oxidation reactions from the precipitates found on the substrate, resulting in a more uniform layer structure along the metal-oxide interface. However, energy consumption in precipitate oxidation reactions leads to reduced oxidation in the aluminum matrix so that the resulting layer becomes thinner. In addition, the release of oxygen gas that occurs during the oxidation process of the precipitate is trapped in the pore-forming layer so that the hardness decreases from 196.2 HV to 117.8; 115.2; and 107.7 HV each with the addition of 10, 20 and 30% EG. The corrosion resistance of the anodic layer is 30 mV higher, the corrosion potential value is 10 mV more positive, the corrosion current is 80 µA/cm2 lower, and the polarization resistance value rises 100 Ω higher with the addition of 10% EG whereas at the higher EG concentration reduce coating corrosion resistance. The optimum EG for producing layers with good mechanical properties and corrosion resistance is 10%. Anodic layer containing EG is sensitive to hydrothermal sealing
"