Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 114 dokumen yang sesuai dengan query
cover
Gianinna Ardaneswari
"Dalam bioinformatika penelusuran basis data sekuens digunakan untuk mencari kemiripan antara sebuah sekuens dengan sekuens lainnya pada suatu basis data sekuens Salah satu algoritma untuk menghitung skor kemiripan yang optimal adalah algoritma Smith Waterman yang menggunakan pemrograman dinamik Algoritma ini memiliki kompleksitas waktu kuadratik yaitu O n2 sehingga untuk data yang berukuran besar membutuhkan waktu komputasi yang lama Komputasi paralel diperlukan dalam penelusuran basis data sekuens ini agar waktu yang dibutuhkan lebih cepat dan memiliki kinerja yang baik Dalam skripsi ini akan dibahas implementasi paralel untuk algoritma Smith Waterman menggunakan bahasa pemrograman CUDA C pada GPU dengan NVCC compiler pada Linux Selanjutnya dilakukan analisis kinerja untuk beberapa model paralelisasi tersebut yaitu Inter task Parallelization Intra task Parallelization dan gabungan keduanya Berdasarkan hasil simulasi yang dilakukan paralelisasi dengan gabungan kedua model menghasilkan kinerja yang lebih baik dari model lainnya Paralelisasi dengan model gabungan menghasilkan rata rata speed up sebesar 313x dan rata rata efisiensi sebesar 0 93

In bioinformatics sequence database searches are applied to find the similarity between a sequence with other sequences in a sequence database One of the algorithms to compute the optimal similarity score is Smith Waterman algorithm that uses dynamic programming This algorithm has a quadratic time complexity O n2 which requires a long computation time for large sized data In this occasion parallel computing is essential to solve this sequence database searches in order to reduce the running time and to increase the performance In this mini thesis we discuss the parallel implementation of Smith Waterman algorithm using CUDA C programming language with NVCC compiler on Linux Furthermore we run the performance analysis using three parallelization models including Inter task Parallelization Intra task Parallelization and a combination of both models Based on the simulation results a combination of both models has better performance than the others In addition parallelization using combination of both models achieves an average speed up of 313x and an average efficiency with a factor of 0 93"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52395
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iing Fitria
"ABSTRAK
Menganalisis populasi bakteri Streptococcus adalah penting karena spesies ini dapat menyebabkan karies gigi, periodental (plak), halitosis (bau mulut) dan masih banyak lagi masalah yang dapat ditimbulkan. Dalam tesis ini akan dibahas hubungan kekerabatan antara bakteri Streptococcus pada air liur dengan menggunakan pohon filogenetik dari metode agglomerative clustering. Dimulai dengan adanya barisan DNA bakteri Streptococcus yang diambil dari pangkalan data gen (GenBank) yang akan disejajarkan, proses pensejajaran yang dilakukan menggunakan Algoritma Needleman-Wuncsh untuk pensejajaran global. Hasil pensejajaran tersebut berupa skor optimal yang merupakan jarak antara dua barisan DNA bakteri Streptococcus. Skor-skor optimal dikumpulkan dalam satu matriks kemudian membuat pohon filogenetik dengan metode agglomerative clustering yang terdiri atas teknik single linkage,complete linkage dan average linkage. Pada setiap teknik, banyaknya kelompok sama dengan banyaknya individu spesies. Spesies yang paling mirip dikelompokkan sampai akhirnya kemiripan berkurang maka terbentuk kelompok tunggal. Hasil dari pengelompokan berupa pohon filogenetik dan cabang-cabang yang bergabung merupakan tingkatan jarak yang terbentuk. Semakin kecil jarak, maka semakin besar kemiripan spesies serta mengimplementasikannya dengan menggunakan perangkat lunak berbasis open source (Oktave).

ABSTRACT
Analyzing population of Streptococcus bacteria is important because these spesies can cause dental caries, periodontal, halitosis (bad breath) and more problems.This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank to be aligned, the alignment is performed using the Neddleman-Wuncsh Algorithm for global alignment. The alignment results in the optimal score or the distance between DNA sequence of the bacterium Streptococcus one another. Optimal scores collected in a single matrix. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this technique the number of group sequal to the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller distance the more the similarity of the larger spesies implementation is using the Octave, an open source program."
2013
T35950
UI - Tesis Membership  Universitas Indonesia Library
cover
Elke Annisa Octaria
"

Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.


Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ï? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Prasnurzaki Anki
"

Pada zaman modern ini, implementasi chatbot digunakan untuk menyimpan data yang dikumpulkan melalui sistem tanya jawab, yang dapat diterapkan dalam program Python. Data yang akan digunakan dalam program ini adalah Cornell Movie Dialog Corpus yang merupakan dataset yang berisi korpus ini berisi kumpulan percakapan fiksi kaya metadata yang besar yang diekstraksi dari skrip film Penerapan chatbot dalam program Python, dapat menggunakan berbagai macam model, secara spesifik pada program ini akan diterapkan model LSTM, dan model BiLSTM. Penerapan chatbot dalam program Python, dapat menggunakan berbagai macam model, secara spesifik pada program ini akan diterapkan model LSTM, dan model BiLSTM. Hasil output dari program chatbot dengan penerapan model LSTM, dan BiLSTM adalah berupa akurasi, serta kumpulan data yang sesuai dengan informasi yang pengguna masukkan dalam input kotak dialog chatbot. Pemilihan model yang dapat diterapkan berdasarkan karakteristik data dapat mempengaruhi kinerja program, dengan tujuan program agar dapat menentukan tinggi atau rendahnya tingkat akurasi yang akan dihasilkan dari hasil yang diperoleh melalui sebuah program, yang dapat dijadikan faktor utama dalam menentukan model yang dipilih. Berdasarkan pertimbangan yang menjadi syarat pemilihan model dari sebuah program, pada akhirnya dipilih model LSTM, dan BiLSTM sebagai model yang akan diterapkan ke dalam program. Selain pemilihan model, berikutnya adalah menentukan metode yang digunakan dalam program, pada program ini dipilih metode greedy sebagai bentuk implementasi model LSTM dan model BiLSTM, dengan tujuan ketika dalam menjalankan program, waktu pengolahan data dapat lebih cepat, dan meningkatkan akurasi pada model yang dipilih pada program. Selain itu, atribut pendukung seperti seq2seq model, menjadi faktor penentu dalam sebuah program yang dapat berfungsi untuk memverifikasi pengolahan data apakah sesuai dengan kriteria yang dapat dijadikan sebagai pedoman dalam pengolahan data. Dalam penerapan komponen-komponen tersebut ke dalam program, seq2seq model dapat memproses kalimat input yang kemudian akan dilakukan pengolahan data tersebut menggunakan model dan struktur lain yang ada pada program, sehingga pada akhirnya dapat menghasilkan kalimat output yang berbagai macam, sebagai respon atas kalimat input yang dihasilkan dari program chatbot. Selain itu diperlukan metode evaluasi program yang dapat digunakan untuk memverifikasi apakah hasil output program sesuai dengan data yang diharapkan oleh pengguna. Berdasarkan penerapan model LSTM, dan model BiLSTM ke dalam chatbot, dapat disimpulkan bahwa dengan semua hasil uji program yang terdiri dari beragam pasangan parameter yang berbeda, maka dinyatakan Pasangan Parameter 1 (size_layer 512, num_layers 2, embedded_size 256, learning_rate 0.001, batch_size 32, epoch 20) yang berasal dari File 6 merupakan BiLSTM Chatbot dengan nilai avg accuracy 0.995217 yang menggunakan model BiLSTM menjadi pasangan parameter terbaik.


In modern times, chatbots are implemented and used to store data collected through a question and answer system which can be applied in the Python program. The data used in this program is the Cornell Movie Dialog Corpus which is a dataset containing a corpus that contains a large collection of metadata-rich fictional conversations extracted from film scripts. The application of chatbots into the Python program can be done using various models. In this research we specifically use the LSTM and BiLSTM models. The output results from the chatbot program with the application of the LSTM and BiLSTM models are in the form of accuracy, as well as a data set that matches the information that the user enters in the chatbot dialog box input. The choice of models that will be applied is based on data that can affect program performance, with the target of the program that can determine the high or low level of accuracy that will be generated from the results obtained through the program, which is a major factor in determining the selected model.
Based on the considerations that are the required for choosing the model for the program, in the end the LSTM and the BiLSTM models are chosen and will be applied to the program. After selecting the appropriate model, the next step is to determine the method used in the program. The greedy method is chosen as a form of implementation of the LSTM and BiLSTM models that aims to decrease the data processing time of the program and make it quicker, and also increase the accuracy of the model selected for the program. In addition, supporting attributes such as the seq2seq model are a determining factor in a program that functions to verify whether data processing process matches the criteria and can be used as a guide. In applying these components to the program, the seq2seq model processes the input sentences which will then be processed using the models and other structures in the program, so that in the end it can produce various output sentences in response to the input sentences that are generated from the chatbot program. In addition, a program evaluation method is needed to verify whether the program output matches the data expected by the user. Based on the application of the LSTM dan BiLTSM models into the chatbot program, it can be concluded that between all the program test results consisting of a variety of different parameter pairs, it is stated that Parameter Pair 1 (size_layer 512, num_layers 2, embedded_size 256, learning_rate 0.001, batch_size 32, epoch 20) from File 3 is the best paramater pair of the BiLSTM Chatbot which uses the BiLTSM model, with the avg accuracy value of 0.995217."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heri Kurnia Andika
"Penyakit Alzheimer adalah penyakit bersifat neurodegenerative atau terdapat penurunan fungsi pada neuron yang bercirikan terdapat gangguan memori yang parah pada bagian otak. Penelitian ini bertujuan menganalisis Alzheimer disease (AD) dalam bentuk data microarray untuk mencari bicluster dengan algoritma BicHPT (Biclustering based on Hamming Pattern Table). Bagian otak manusia akan dibagi terlebih dahulu menjadi enam bagian yang menjadi penyebab AD yakni Entorhinal Cortex (EC), Hippocampus (HIP), Middle Temporal Gyrus (MTG), Posterior Cingulate Cortex (PC), Superior Frontal Gyrus (SFG), dan Visual Cortex (VCX). Algoritma untuk mendapatkan Bicluster pada umumnya hanya dapat digunakan dalam matriks dengan entri bilangan real namun pada penelitian ini akan digunakan algoritma BicHPT yang dapat digunakan untuk mendapatkan bicluster dari matriks yang berisi entri dengan nilai biner yakni 0 dan 1. Data microarray dari Alzheimer disease akan dibinerisasi terlebih dahulu melalui threshold dari mean keseluruhan matriks. Jika nilai suatu entri melebihi nilai threshold maka entri tersebut akan bernilai 1 dan sebaliknya jika entri kurang dari nilai threshold maka entri matriks tersebut akan bernilai 0. Setelah semua entri pada matriks dibinerisasi akan diaplikasikan algoritma BicHPT. Konsep utama algoritma ini adalah mencari jarak Hamming pada masing-masing kolom matriks untuk mendapatkan kandidat bicluster. Algoritma BicHPT terdiri atas beberapa langkah yakni: Mereduksi kolom matriks, mencari tabel dari jarak Hamming, mendapatkan candidat bicluster, dan terakhir diperoleh hasil bicluster dalam bentuk submatriks. Gen dari hasil bicluster yang didapatkan akan dianalisis dengan gene ontology (GO) untuk mengetahui fungsi biologis dari bicluster tersebut. Dengan mendapatkan informasi dari fungsi biologis tersebut melalui algoritma BicHPT diharapkan dapat memberikan potensi dalam analisis diagnosis penyakit Alzheimer di bidang medis.

Alzheimer’s disease is a neurodegenerative disesase or a decline function in neurons which is characterized by severe memory impairment in parts of the brain. In this study we aim to analyze this Alzheimer’s disease (AD) from microarray data to look after a bicluster using BicHPT (Biclustering based on Hamming Pattern Table) algorithm. First we divide the humain brain into six parts that cause the AD, there is Entorhinal Cortex (EC), Hippocampus (HIP), Middle Temporal Gyrus (MTG), Posterior Cingulate Cortex (PC), Superior Frontal Gyrus (SFG), and Visual Cortex (VCX). An algorithm to get a bicluster used only available on real number of matrices. But in this study the BicHPT algorithm can be used to get bicluster from matrices that contain entries with binary number which is 0 or 1. The microarray data from AD will be binarized first through the threshold of the mean from the whole matrices. If the value of an entry exceeds the threshold then the entry will be 1 on the other side if the value of the entry is less than the threshold the matrice will become 0. After all entries in the matrice are binarized, the BicHPT algorithm will be applied. The main concept of this algorithm is to find the Hamming distance in each column to get the bicluster candidates. BicHPT algorithm consist of several steps, which is reducing the matrices column, filling the Hamming distance table, seek for bicluster candidat, and build a bicluster in form of submatrices. Genes from the obtained bicluster will be analyzed by Gene Ontology (GO) to determine the biological function of the bicluster. By that information from these biological functionsthrough the BicHPT algorithm we hope to provide some potential in the analysis of Alzheimer diagnosis in the medical in the future."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Hilmizen
"Pada awal pandemi COVID-19, keputusan medis pada pasien ditentukan oleh dokter berdasarkan banyak tes medis (misalnya, tes reaksi berantai polimerase, tes suhu, CTScan atau X-ray). Metode transfer learning telah digunakan dalam beberapa penelitian dan berfokus hanya pada satu biomarker (misalnya, hanya CT-Scan atau X-Ray saja) untuk mendiagnosis pneumonia. Dalam studi terbaru, modalitas tunggal memiliki keakuratan klasifikasi sendiri dan setiap biomarker yang berbeda dapat memberikan informasi pelengkap untuk mendiagnosis COVID-19 pneumonia. Tujuan pada penelitian ini adalah membangun model multimodal yaitu dengan menggabungkan dua masukan (input) menjadi satu keluaran (output) pada tahapan pembuatan model. Dua model transfer learning yang berbeda telah digunakan pada masing-masing masukan dengan dataset open-source 2849 gambar CT-Scan dan 2849 gambar X-ray untuk mengklasifikasikan gambar CT-Scan dan gambar X-ray menjadi dua kelas: normal dan COVID-19 pneumonia. Model transfer learning yang digunakan adalah model DenseNet121, model MobileNet, model Xception, model InceptionV3, model ResNet50 dan model VGG16 untuk proses ekstraksi fitur. Alhasil, akurasi klasifikasi terbaik didapatkan sebesar 99,87% saat penggabungan jaringan ResNet50 dan VGG16. Kemudian, akurasi klasifikasi terbaik didapatkan sebesar 98,00% saat menggunakan modalitas tunggal model ResNet50 dengan data CT-Scan dan akurasi klasifikasi sebesar 98,93% untuk model VGG16 dengan data X-Ray. Metode penggabungan multimodal learning menunjukkan akurasi klasifikasi yang lebih baik dibandingkan dengan metode yang menggunakan hanya satu modalitas saja.

Due to COVID-19 Pandemic, medical decisions on patients were made by doctors based on many medical tests (e.g., polymerase chain reaction test, temperature test, CT-Scan or X-ray). Transfer learning methods have been used in several studies and focus on only one biomarker (eg, CT-Scan or X-Ray only) for diagnosing pneumonia. In recent studies, a single modality has its own classification accuracy and each different biomarker can provide complementary information for diagnosing COVID-19 pneumonia. The purpose of this research is to build a multimodal model by combining two inputs (inputs) into one output (output) at the modeling stage. Two different transfer learning models were used at each input with an open-source dataset of 2849 CT-Scan images and 2849 X-ray images to classify CT-Scan images and X-ray images into two classes: normal and COVID-19 pneumonia. . The transfer learning model used is the DenseNet121 model, the MobileNet model, the Xception model, the InceptionV3 model, the ResNet50 model and the VGG16 model for the feature extraction process. As a result, the best classification accuracy was obtained at 99.87% when merging the ResNet50 and VGG16 networks. Then, the best classification accuracy was obtained at 98.00% when using a single modality ResNet50 model with CT-Scan data and a classification accuracy of 98.93% for the VGG16 model with X-Ray data. The multimodal learning combination method shows better classification accuracy than the method that uses only one modality."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alrafiful Rahman
"COVID-19 merupakan penyakit pernapasan seperti pneumonia yang mengakibatkan kematian pada jutaan orang setiap harinya. Januari 2020, "Organisasi Kesehatan Dunia" WHO menyatakan COVID-19 sebagai wabah penyakit virus yang menjadi perhatian internasional sebagai darurat kesehatan masyarakat yang menjadi perhatian internasional, dikenal sebagai pandemi dunia. Dilaporkan dari 205 negara di seluruh dunia, pada 1 April 2020, penularan virus COVID-19 sekitar ada lebih dari 900000 kasus COVID-19 yang dikonfirmasi dan hampir 50000 kematian. Berdasarkan laporan WHO, angka kematian 2-3% orang karena virus. Sangat penting untuk melakukan tes diagnostik sejak dini stadium berdasarkan kriteria sebagai gejala klinis, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR), sehingga dapat segera mengisolasi orang yang terinfeksi. Mendiagnosis penyakit virus COVID-19 dengan pencitraan yang lebih efektif menggunakan citra CT dada. Model DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, dan VGG19 untuk memeriksa keakuratannya dalam pengenalan gambar. Untuk menganalisis kinerja model, 1888 sampel dari gambar CT paru-paru dikumpulkan dari situs resmi Kaggle. Model penggabungan (concatenate) pada arsitektur CNN yang telah terlatih seperti penggabungan (concatenate) antara ResNet152V2 dengan VGG19 memiliki accuracy sebesar 99,65%, sensitivity sebesar 99,66%, precision sebesar 99,66%, recall sebesar 99,66%, specificity sebesar 99,64%, dan skor F-measure sebesar 99,66%; gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 99,64%, precision sebesar 99,64%, recall sebesar 99,64%, specificity sebesar 99,66%, dan F-measure sebesar 99,64%; serta gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,001 maupun gabungan InceptionV3 dan Xception saat batchsize 32 dan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 100%, precision sebesar 99,28%, recall sebesar 100%, specificity sebesar 99,31%, dan F-measure sebesar 99,64%.

COVID-19 is a respiratory disease like pneumonia that kills millions of people every day. January 2020, the WHO "World Health Organization" declared COVID-19 as a viral outbreak of international concern as a public health emergency of international concern, known as a world pandemic. Reported from 205 countries around the world, as of April 1, 2020, the transmission of the COVID-19 virus was around more than 900000 confirmed cases of COVID-19 and nearly 50000 deaths. Based on the WHO report, the death rate of 2-3% of people is due to the virus. To isolate the infected person immediately, it is very important to carry out a diagnostic test early based on the criteria as a clinical symptom, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR). Diagnosing COVID-19 viral disease with more effective imaging using chest CT images. DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, and VGG19 models for accuracy in image recognition. To analyze the model's performance, 1888 samples of CT images of the lungs were collected from the official Kaggle website. The concatenate model on the CNN architecture that has occurred, such as the concatenate between ResNet152V2 and VGG19, has an accuracy of 99.65%, sensitivity of 99.66%, the precision of 99.66%, recall of 99.66%, specificity by 99.64%, and the F-measure score of 99.66%; the combination of DenseNet201 and MobileNet was obtained when batch size 32 and 64 with a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 99.64%, the precision of 99.64%, recall of 99.64%, specificity of 99.66 %, and F-measure of 99.64%; and the combination of DenseNet201 and MobileNet obtained at batch size 32 and 64 with a learning rate of 0.001 or a combination of InceptionV3 and Xception at batch size 32 and a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 100%, precision of 99.28%, recall of 100%, specificity of 99.31%, and F-measure of 99.64%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aminatuzuhriah Rizki
"Protein mempunyai peranan penting sebagai struktur dalam tubuh virus. Protein tersebut saling berinteraksi membentuk jaringan interaksi protein-protein. Jaringan interaksi protein coronavirus mempunyai ribuan protein dan interaksi yang membentuk jaringan interaksi protein yang besar, sehingga diperlukan metode pengelompokan untuk menyederhanakan analisis jaringan tersebut. Pada penelitian ini, algoritma Markov Clustering (MCL) yang dikombinasikan dengan maximum matching dijalankan pada sebuah kerangka kerja multilevel untuk mengelompokkan jaringan interaksi protein coronavirus. Algoritma maximum matching digunakan untuk memperoleh hasil matching yang optimal di fase graph coarsening pada setiap level dan algoritma MCL digunakan untuk mengelompokan jaringan interaksi protein tersebut. Hasil pengelompokan yang paling optimal diperoleh pada parameter penggelembungan dengan level-1. Hasil tersebut dilihat berdasarkan nilai average N-cut yaitu 0,8729. Semakin kecil nilai average N-cut, maka kualitas hasil pengelompokannya semakin baik. Hasil pengelompokan terbaik pada jaringan interaksi protein coronavirus menggunakan ML-MCL dengan maximum matching dihasilkan 21 klaster terpisah dengan 4911 interaksi. Protein yang mempunyai peran penting dapat dilihat dari pusat klaster pada hasil pengelompokan terbaik dan protein-protein tersebut yaitu ZW10, ZYG11A, ZNF771, ZZEF1, ZNF451, ZNF668, YKT6, WDR11, ZNF318, ZYG11B, ZNF428, ZPR1, ZFR, TK2, ZNF746, UBR5, ZNF609, ZZZ3, ZBTB16, XPNPEP3, dan USP7. Waktu yang dibutuhkan pada hasil pengelompokan terbaik yaitu 376,6494 detik. Pada simulasi ini, tidak terdapat protein yang hilang pada seluruh hasil pengelompokan.

Protein has an essential role as a structure in the body of the virus. These proteins interact to form a network of protein-protein interactions. The protein interaction network of coronavirus has thousands of proteins and interactions that form a large protein interaction network, so that a clustering method is needed to simplify the analysis of the network. In this study, the Markov Clustering (MCL) algorithm was built combined with maximum matching in a multilevel framework to cluster the protein interaction network of coronavirus. The maximum matching algorithm is used to obtain the optimal matching result in the graph coarsening phase at each level, and the MCL algorithm is used to cluster the protein interaction network. The most optimal grouping results were obtained at inflation parameter with level-1. These results are seen based on the average N-cut value, which is 0.8729. The smaller the average N-cut value, the better the quality of the clustering results. The best clustering result of the protein interaction network of coronavirus using ML-MCL with maximum matching resulted in 21 separate clusters with 4911 interactions. Proteins that have an important role can be seen from the center of the cluster of the best clustering result, and these proteins are ZW10, ZYG11A, ZNF771, ZZEF1, ZNF451, ZNF668, YKT6, WDR11, ZNF318, ZYG11B, ZNF428, ZPR1, ZFR, TK2, ZNF746, UBR5, ZNF609, ZZZ3, ZBTB16, XPNPEP3, and USP7. The time required for the best clustering results is 376.6494 seconds. In this simulation, there were no missing proteins in all clustering results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Endang Tri Hastuti
"Coronavirus Disease 2019 (COVID-19) pertama kali diidentifikasi di Wuhan, Thiongkok pada akhir Desember 2019. COVID-19 disebabkan oleh coronavirus baru yaitu The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Sejak 11 Maret 2020, WHO secara resmi menyatakan pandemi COVID-19. COVID-19 ini menginfeksi saluran pernapasan manusia yaitu sel epitel alveolus paru-paru yang menyebabkan pneumonia. Dengan bantuan metode dari Deep learning yaitu Convolutional Neural Network (CNN) dapat digunakan dalam mendeteksi kasus COVID-19 melalui tanda-tanda pneumonia pada data citra Chest X-ray. Deteksi dini kasus COVID-19 sangat diperlukan sebagai langkah meminimalkan penularan dan mengurangi resiko kematian pasien. Oleh karena itu, penelitian ini membangun metode CNN transfer learning model DenseNet121, MobileNet dan ResNet50 dengan pendekatan pseudo-colouring (RGB) dalam mengklasifikasi kasus COVID-19 ke dalam tiga kelas yaitu: COVID-19 pneumonia, sehat dan viral pneumonia. Pendekatan pseudo-colouring (RGB) dilakukan pada tahap praproses dengan memanipulasi warna pada data citra Chest X-ray sebagai sarana untuk membantu meningkatkan hasil akurasi, presisi dan sensitivitas. Hasil evaluasi pada terbaik terdapat pada model DenseNet121 menunjukkan peningkatan akurasi total 99%, presisi total 99% dan sensitivitas total 99%. Pada model MobileNet menunjukkan peningkatan pada akurasi total 97%, presisi total 97% dan sensitivitas total 95% dan pada model ResNet50 menunjukkan peningkatan pada akurasi total 97%, presisi total 98% dan sensitivitas total 94%.

Coronavirus Disease 2019 (COVID-19) was first identified in Wuhan, China at the end of December 2019. COVID-19 is caused by a new coronavirus, namely The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since March 11, 2020, WHO has officially declared a COVID-19 pandemic. This COVID-19 infects the human respiratory tract, namely the alveolar epithelial cells of the lungs which causes pneumonia. With the help of methods from Deep learning, the Convolutional Neural Network (CNN) can be used to detect cases of COVID-19 through signs of pneumonia in Chest X-ray image data. Early detection of COVID-19 cases is important to minimize transmission and reduce the risk of patient death. Therefore, this study builds the CNN transfer learning model DenseNet121, MobileNet and ResNet50 with a pseudo-coloring (RGB) approach in classifying COVID-19 cases into three classes, namely: COVID-19 pneumonia, healthy and viral pneumonia. The pseudo-coloring (RGB) approach at the preprocessing stage by manipulating the colors in the Chest X-ray image data as a means to help improve accuracy, precision and sensitivity results. The evaluation results on the DenseNet121 model showed an increase in total accuracy of 99%, total precision of 99% and total sensitivity of 99%. The MobileNet model showed an increase in total accuracy of 97% , total precision of 97% and total sensitivity of 95% and the ResNet50 model showed an increase in total accuracy of 97%, total precision of 98% and total sensitivity of 94%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gregorino Al Josan
"Cardiovascular diseases (CVD) merupakan salah satu penyebab utama kematian di dunia. WHO memperkirakan angka 17,9 juta kematian pada tahun 2021 disebabkan oleh CVD. Di Indonesia sendiri, prevalensi penyakit jantung mencapai angka 1,5% atau sekitar 2,7 juta orang pada tahun 2018. CVD mencakup berbagai macam jenis penyakit jantung. Salah satu tipe penyakit jantung tersebut adalah congestive heart failure. Congestive heart failure (CHF) adalah kondisi dimana jantung tidak dapat memompa darah yang cukup ke seluruh bagian tubuh. CHF dapat terjadi dikarenakan melemahnya kemampuan otot jantung untuk memompa darah sehingga mempengaruhi heart rate atau detak jantung manusia. Heart rate dapat direpresentasikan menggunakan sinyal yang dapat diukur menggunakan alat rekaman electrocardiogram (ECG/EKG). EKG adalah rekaman aktivitas elektrik jantung yang ditangkap melalui bagian permukaan tubuh. Heart rate variability (HRV) diketahui berkorelasi dengan berbagai penyakit jantung dan salah satunya adalah CHF. Dengan berkembangnya teknologi, terdapat beberapa penelitian mengenai implementasi artificial intelligence (AI) untuk mendeteksi keberadaan CHF menggunakan model machine learning dan HRV sebagai fitur bagi model. Pada penelitian ini, akan dibangun dan dievaluasi kinerja model XGBoost untuk mendeteksi eksistensi penyakit CHF pada short-term HRV dari rekaman EKG 5 menit. Dataset yang digunakan berasal dari empat database yang berbeda yang diambil dari situs PhysioNet, yaitu NSRDB dan NSR2DB sebagai kelas sehat dan CHFDB dan CHF2DB sebagai kelas CHF. Masing-masing database memiliki rekaman long-term EKG. Seluruh rekaman tersebut dilakukan segmentasi selama 5 menit pada 2 jam pertama rekaman. Dari hasil segmentasi rekaman 5 menit tersebut akan dihitung nilai HRV yang akan menjadi fitur bagi model XGBoost. XGBoost dilatih menggunakan kombinasi teknik Grid Search dan K-Fold Cross Validation dengan nilai 𝐾 = 10. Terdapat 4 metrik yang dijadikan objektif optimisasi Grid Search, yaitu akurasi, sensitivitas, spesifisitas, dan skor AUC. XGBoost yang dilatih dengan mengoptimasi akurasi berhasil mencapai nilai akurasi sebesar 0,954, sensitivitas sebesar 0,935, spesifisitas sebesar 0,96, dan skor AUC sebesar 0,947. XGBoost yang dilatih dengan mengoptimasi sensitivitas berhasil mencapai nilai akurasi sebesar 0,966, sensitivitas sebesar 0,977, spesifisitas sebesar 0,963, dan skor AUC sebesar 0,97. XGBoost yang dilatih dengan mengoptimasi spesifisitas berhasil mencapai nilai akurasi sebesar 0,962, sensitivitas sebesar 0,931, spesifisitas sebesar 0,971, dan skor AUC sebesar 0,951. Kemudian XGBoost yang dilatih dengan mengoptimasi skor AUC berhasil mencapai nilai akurasi sebesar 0,955, sensitivitas sebesar 0,935, spesifisitas sebesar 0,962, dan skor AUC sebesar 0,948.

Cardiovascular diseases (CVD) is one of the major causes of death in the world. WHO estimated that 17.9 million of deaths during 2021 are caused by CVD. In Indonesia alone, the prevalence of heart diseases reached 1.5% or around 2,7 million people in 2018. CVD consists of various types of heart disease. Congestive heart failure is one of them. Congestive heart failure (CHF) is a condition where the heart cannot pump enough blood for the entire body. CHF can occur due to a weakening of the heart muscle's ability to pump blood, thereby affecting the human heart rate. Heart rate can be represented using signal that can be measured using electrocardiogram (ECG/EKG) recording. EKG is a recording of the heart's electrical activity captured through the surface of the body. Heart rate variability (HRV) have been known to be correlated with various heart diseases with CHF is one of it. With the advance of technology, there have been various research regarding the implementation of artificial intelligence (AI) to detect the presence of CHF using machine learning model and HRV as features for the model. In this research, we built and evaluated the performance of XGBoost model to detect the existence of CHF on short-term HRV from 5 minutes EKG recording. The dataset came from four different databases that can be accessed from PhysioNet website. Those are NSRDB and NSR2DB datasets to represent healthy class and CHFDB and CHF2DB to represent CHF class. Each database contains long-term EKG. All records are segmented by 5 minutes on the first 2 hours of the recording. HRV metrics are calculated from those 5 minutes segments to become features for the XGBoost model. XGBoost was trained using a combination of Grid Search and K-Fold Cross Validation techniques with 𝐾 = 10. There are 4 metrics that become the objective scoring function for the Grid Search. Those are accuracy, sensitivity, specificity, and AUC score. XGBoost trained to optimize accuracy managed to achieve 0.954 accuracy, 0.935 sensitivity, 0.96 specificity, and 0.947 AUC score. XGBoost trained to optimize sensitivity managed to achieve 0.966 accuracy, 0.977 sensitivity, 0.963 specificity, and 0.97 AUC score. XGBoost trained to optimize specificity managed to achieve 0.962 accuracy, 0.931 sensitivity, 0.971 specificity, and 0.951 AUC score. Lastly, XGBoost trained to optimize AUC score managed to achieve 0.955 accuracy, 0.935 sensitivity, 0.962 specificity, and 0.948 AUC score."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>