Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69 dokumen yang sesuai dengan query
cover
Jihan Prama Nurahman
"Pandemi covid-19 di Indonesia yang terjadi pada tahun 2020 telah mengubah berbagai aspek di setiap lini masyarakat Indonesia, termasuk cara masyarakat berbelanja. Regulasi terkait pembatasan akses dan jarak memaksa masyarakat Indonesia bertransformasi menggunakan aplikasi daring untuk memenuhi kebutuhan sehari-hari. Salah satu aplikasi daring yang penggunaannya meningkat adalah penggunaan aplikasi grosir daring seperti HappyFresh, Sayurbox, dan TaniHub. Peningkatan transaksi tidak serta merta menggambarkan bahwa layanan yang diberikan oleh ketiga aplikasi itu baik, keluhan pelanggan masih ditemukan pada media sosial seperti Twitter dan ulasan pengguna aplikasi di Google Play Store. Penelitian ini bertujuan untuk menghitung Net Brand Reputation (NBR) dari ketiga aplikasi dengan melakukan analisis sentimen analisis. Data yang digunakan berasal dari Twitter dan ulasan pengguna di Google Playstore dalam rentang waktu Januari 2020 hingga Maret 2021. Model klasifikasi analisis sentimen dibuat dengan menggunakan tiga algoritma klasifikasi Naïve Bayes, Support Vector Machine (SVM), dan Decision Tree. Hasil dari penelitian didapatkan aplikasi Happyfresh, Sayurbox, dan TaniHub memiliki sentimen positif di masyarakat. Aplikasi grosir daring yang memiliki nilai NBR terbesar adalah Tanihub, kedua adalah Happyfresh, dan yang terakhir adalah Sayurbox.

The COVID-19 pandemic in Indonesia that occurred in 2020 has changed various aspects in every line of Indonesian society, including the way people shop. Regulations related to access and distance restrictions force Indonesians to transform using online applications to meet their daily needs. One of the online applications whose use is increasing is the use of online wholesale applications such as HappyFresh, Sayurbox, and TaniHub. The increase in transactions does not necessarily illustrate that the services provided by the three applications are good, customer complaints are still found on social media such as Twitter and application user reviews on the Google Play Store. This study aims to calculate the Net Brand Reputation (NBR) of the three applications by performing sentiment analysis. The data used comes from Twitter and user reviews on the Google Playstore in the period January 2020 to March 2021. The sentiment analysis classification model is created using three classification algorithms, Naïve Bayes, Support Vector Machine (SVM), and Decision Tree. The results of the study showed that Happyfresh, Sayurbox, and TaniHub applications had positive sentiments in the community. The online wholesale application that has the largest NBR value is Tanihub, the second is Happyfresh, and the last is Sayurbox."
Jakarta: Fakultas Ilmu Komputer, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kwee Felicia Ilona
"Kejadian banjir ekstrem diperkirakan semakin sering terjadi seiring dengan perubahan iklim yang belum menunjukkan tanda-tanda perbaikan. Hal ini berpotensi menyebabkan curah hujan yang lebih tinggi dari rata-rata dan laju kenaikan genangan banjir yang lebih cepat dari biasanya. Ketidaktahuan bahwa suatu daerah tergenang banjir juga bisa mengakibatkan kendaraan terjebak di daerah banjir, kemacetan lalu lintas, serta terlambatnya evakuasi warga terutama yang tinggal di daerah rawan banjir. Penelitian ini bertujuan memberikan alternatif sumber informasi mengenai ketinggian genangan banjir dengan memanfaatkan data teks dari tweet pada media sosial Twitter. Salah satu tantangannya yaitu bahwa ketinggian genangan tidak selalu disebutkan dalam standar satuan internasional seperti centimeter atau meter sehingga machine learning digunakan untuk mengatasinya. Penyebutan ketinggian genangan didapati bisa menggunakan referensi bagian tubuh seperti lutut dan pinggang, serta juga bagian kendaraan atau kondisi jalan. Model yang diusulkan memberikan dua keluaran, yaitu kategori relevansi tweet terhadap informasi ketinggian banjir (Relevan atau Tidak Relevan) dan kategori ketinggian banjir (Tinggi, Sedang, Rendah, dan Tidak Diketahui). Algoritma klasifikasi yang digunakan yaitu SVM (Linear SVC dan RBF), Logistic Regression, Random Forest, Decision Tree, dan Naïve Bayes. Hasil uji coba menunjukkan bahwa nilai akurasi tertinggi untuk klasifikasi relevansi tweet adalah 91% dan F1-score tertinggi sebesar 82% diperoleh dengan menggunakan algoritma SVM Linear SVC. Sedangkan hasil klasifikasi ketinggian genangan terbaik diperoleh saat menggunakan SVM Linear SVC dengan akurasi 83% dan rata-rata F1-score 70%.

Extreme flood events are expected to occur more frequently as climate change has yet to show signs of improvement. This has the potential to lead to higher rainfall and floods that come more quickly. This has the potential for vehicle trapping, traffic jams, or delay in evacuation for people who live in areas which are prone to flooding. Hence, this study aims to provide an alternative source of information in flood conditions by using data in social media Twitter. One of the challenges was information about inundation level is not always in international standard unit like centimeter or meter so that machine learning was used to cope with this problem. Mention of inundation level was found to be done by also referring to certain body parts like knee and waist, and also parts of vehicles or road condition. The proposed model is expected to provide two outputs, which are relevance category of tweet (Relevant or Irrelevant) and inundation level category (High, Medium, Low, Unknown). Some classifier algorithms were used, like SVM (Linear SVC and RBF), Logistic Regression, Random Forest, Decision Tree, and Naïve Bayes. The test results showed that the best relevance classification resulted in 91% accuracy (SVM Linear SVC) and 82% average F1-score by using SVM Linear SVC. On the other side, the best result of classification of inundation level was obtained when using SVM Linear SVC which resulted in 83% accuracy and 70% average F1- score."
2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Anwar Farihin
"Pengenalan Entitas Bernama (NER) telah diteliti cukup dalam, khususnya pada korpus berbahasa Inggris. Namun, penelitian NER pada korpus twit berbahasa Indonesia masih sangat sedikit karena minimnya dataset yang tersedia secara publik. BERT sebagai salah satu model state-of-the-art pada permasalahan NER belum diimplementasikan pada korpus twit berbahasa Indonesia. Kontribusi kami pada penelitian ini adalah mengembangkan dataset NER baru pada korpus twit berbahasa Indonesia sebanyak 7.426 twit, serta melakukan eksperimen pada model CRF dan BERT pada dataset tersebut. Pada akhirnya, model terbaik pada penelitian ini menghasilkan nilai F1 72,35% pada evaluasi tingkat token, serta nilai F1 79,27% (partial match) dan 75,40% (exact match) pada evaluasi tingkat entitas.

Named Entity Recognition (NER) has been extensively researched, primarily for understanding the English corpus. However, there has been very little NER research for understanding Indonesian-language tweet corpus due to the lack of publicly available datasets. As one of the state-of-the-art models in NER, BERT has not yet been implemented in the Indonesian-language tweet corpus. Our contribution to this research is to develop a new NER dataset on the corpus of 7.426 Indonesian-language tweets and to conduct experiments on the CRF and BERT models on the dataset. In the end, the best model of this research resulted in an F1 score of 72,35% at the token level evaluation and an F1 score of 79,27% (partial match) and 75,40% (exact match) at the entity level evaluation."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jihan Prama Nurahman
"Pandemi covid-19 di Indonesia yang terjadi pada tahun 2020 telah mengubah berbagai aspek di setiap lini masyarakat Indonesia, termasuk cara masyarakat berbelanja. Regulasi terkait pembatasan akses dan jarak memaksa masyarakat Indonesia bertransformasi menggunakan aplikasi daring untuk memenuhi kebutuhan sehari-hari. Salah satu aplikasi daring yang penggunaannya meningkat adalah penggunaan aplikasi grosir daring seperti HappyFresh, Sayurbox, dan TaniHub. Peningkatan transaksi tidak serta merta menggambarkan bahwa layanan yang diberikan oleh ketiga aplikasi itu baik, keluhan pelanggan masih ditemukan pada media sosial seperti Twitter dan ulasan pengguna aplikasi di Google Play Store. Penelitian ini bertujuan untuk menghitung Net Brand Reputation (NBR) dari ketiga aplikasi dengan melakukan analisis sentimen analisis. Data yang digunakan berasal dari Twitter dan ulasan pengguna di Google Playstore dalam rentang waktu Januari 2020 hingga Maret 2021. Model klasifikasi analisis sentimen dibuat dengan menggunakan tiga algoritma klasifikasi Naïve Bayes, Support Vector Machine (SVM), dan Decision Tree. Hasil dari penelitian didapatkan aplikasi Happyfresh, Sayurbox, dan TaniHub memiliki sentimen positif di masyarakat. Aplikasi grosir daring yang memiliki nilai NBR terbesar adalah Tanihub, kedua adalah Happyfresh, dan yang terakhir adalah Sayurbox.

The COVID-19 pandemic in Indonesia that occurred in 2020 has changed various aspects in every line of Indonesian society, including the way people shop. Regulations related to access and distance restrictions force Indonesians to transform using online applications to meet their daily needs. One of the online applications whose use is increasing is the use of online wholesale applications such as HappyFresh, Sayurbox, and TaniHub. The increase in transactions does not necessarily illustrate that the services provided by the three applications are good, customer complaints are still found on social media such as Twitter and application user reviews on the Google Play Store. This study aims to calculate the Net Brand Reputation (NBR) of the three applications by performing sentiment analysis. The data used comes from Twitter and user reviews on the Google Playstore in the period January 2020 to March 2021. The sentiment analysis classification model is created using three classification algorithms, Naïve Bayes, Support Vector Machine (SVM), and Decision Tree. The results of the study showed that Happyfresh, Sayurbox, and TaniHub applications had positive sentiments in the community. The online wholesale application that has the largest NBR value is Tanihub, the second is Happyfresh, and the last is Sayurbox."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fathan Muhammad
"Pengenalan wajah adalah permasalahan fundamental di computer vision. Salah satu solusi permasalahan ini adalah pembelajaran metrik, yang dapat dilakukan dengan metode deterministik atau metode probabilistik. Penelitian ini bertujuan untuk menggabungkan keunggulan model deterministik Proxy Anchor dengan model probabilistik Probabilistic Face Embeddings menjadi suatu model usulan ProxyPE. Selain itu, kami juga mengusulkan kerangka alur prapemrosesan citra wajah untuk citra masukan melalui restorasi wajah dengan GFP-GAN. Dataset citra wajah yang digunakan pada penelitian ini adalah dataset Labelled Faces in the Wild. Pengujian pada model ProxyPE menunjukkan hasil evaluasi yang lebih unggul dengan MAP@R sebesar 8.28, dibandingkan dengan model Probabilistic Face Embeddings dengan MAP@R sebesar 4.58, namun belum sebaik model Proxy Anchor dengan dengan MAP@R sebesar 18.75. Selanjutnya, peningkatan kualitas citra melalui restorasi wajah dengan GFP-GAN secara umum meningkatkan kinerja model usulan. Pengenalan wajah pada ProxyPE yang didahului prapemrosesan citra wajah tersebut menunjukkan peningkatan kinerja dengan MAP@R sebesar 8.74. Secara umum, model usulan ProxyPE dapat mengenali wajah dengan lebih baik daripada Probabilistic Face Embeddings dengan dan tanpa GFP-GAN.

Face recognition is a fundamental problem in computer vision. One solution to this problem is metric learning, that can be done with deterministic methods or probabilistic methods. This research aims to combine the advantages of the deterministic Proxy Anchor model and the Probabilistic Face Embeddings model, into the proposed ProxyPE model. In addition, we also propose an image preprocessing framework for input images by restoring faces using GFP-GAN. The dataset of face images used in this research is the Labelled Faces in the Wild dataset. Evaluation on the ProxyPE model shows better results with MAP@R of 8.28, compared to the Probabilistic Face Embeddings model’s MAP@R of 4.58, but not as good as the Proxy Anchor model’s MAP@R of 18.75. Furthermore, improving image quality through face restoration with GFP-GAN generally improves our model’s performance. Face recognition on ProxyPE preceded by preprocessing face images results in a performance improvement with MAP@R of 8.74. Overall, the proposed ProxyPE model achieves better performance than Probabilistic Face Embeddings with and without GFP-GAN."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rhoma Cahyanti
"Dunia menghadapi ancaman pandemi Covid-19 pada akhir tahun 2019. Tanggapan terhadap situasi pandemi menimbulkan perubahan dalam cara bekerja dan memaksa sebagian besar pekerja non-esensial untuk beradaptasi dengan bekerja dari jarak jauh. Setelah penyebaran virus dan tingkat kematian akibat Covid-19 mulai menurun, organisasi dan perusahaan mulai memberlakukan kembali kebijakan WFO. Namun, kembalinya aktivitas bekerja secara normal tidak disambut baik oleh para pekerja. Sejumlah survei mengungkapkan bahwa banyak pekerja yang enggan kembali bekerja di kantor setelah beradaptasi dengan bekerja dari rumah selama dua tahun pandemi. Penelitian menggunakan experimental research untuk melakukan analisis sentimen dan pemodelan topik terhadap kebijakan WFO. Analisis sentimen dilakukan dengan membandingkan lima algoritma pembelajaran mesin, Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, dan Neural Networks. Sedangkan pemodelan topik menggunakan algoritma Latent Dirichlet Allocation. Penelitian menggunakan data dari Twitter yang diambil sejak bulan Januari 2022 hingga Mei 2023. Berdasarkan hasil eksperimen, algoritma Neural Networks dengan sampel data oversampling memberikan performa terbaik dalam memprediksi sentimen. Model menghasilkan nilai akurasi sebesar 75,61% dan f1-score 75,16%. Berdasarkan hasil penelitian, sentiment yang paling banyak diungkapkan di Twitter terkait kebijakan WFO adalah netral, disusul negatif, dan terakhir positif. Sedangkan dari hasil pemodelan topik, sentiment positif menghasilkan 3 topik, yaitu “keseruan WFO karena bertemu teman kantor”, “bekerja secara WFO meningkatkan fokus dan produktivitas”, serta “aktivitas jajan dan makan siang saat WFO”. Sentimen negatif 4 menghasilkan topik, di antaranya “kemacetan lalu lintas saat WFO”, “peningkatan biaya transport dan pengeluaran saat WFO”, “efek WFO terhadap kesehatan”, serta “kemalasan di pagi hari saat WFO”. Sedangkan sentimen netral menghasilkan 3 topik, yaitu “lowongan kerja hybrid working atau WFA”, “bekerja secara WFO”, dan “rutinintas WFO”.

The world faced the threat of the Covid-19 pandemic at the end of 2019. The response to the pandemic situation led to changes in the way of working and forced most non- essential workers to adapt to remote working. After the spread of the virus and the death rate due to Covid-19 began to decline, organizations and companies began to re-impose WFO policies. However, the return to normal work activities was not welcomed by workers. Several surveys reveal that many workers are reluctant to return to the office after adapting to working from home during the two years of the pandemic. The research uses experimental research to conduct sentiment analysis and topic modeling on WFO policies. Sentiment analysis is carried out by comparing five machine learning algorithms, Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and Neural Networks. Meanwhile, topic modeling uses the Latent Dirichlet Allocation algorithm. The research uses data from Twitter taken from January 2022 to May 2023. Based on experimental results, the Neural Networks algorithm with oversampling data samples provides the best performance in predicting the sentiment. The model produces an accuracy value of 75.61% and an f1-score of 75.16%. Based on research results, the most expressed sentiment on Twitter regarding WFO policies is neutral, followed by negative, and then positive. Meanwhile, from the results of topic modeling, positive sentiment resulted in 3 topics, namely "the excitement of WFO because of meeting office friends", "working in WFO increases focus and productivity", and "lunch activities during WFO". Negative sentiment generated 4 topics, including "traffic jams during WFO", "increased transport costs and expenses during WFO", "effects of WFO on health", and "laziness in the morning during WFO". Meanwhile, neutral sentiment resulted in 3 topics, namely "hybrid working or WFA job vacancies", "working activities in the office", and "WFO routines"."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Relaci Aprilia Istiqomah
"Rohingya merupakan etnis minoritas yang hingga saat ini masih menghadapi penganiayaan dan diskriminasi di negara Myanmar sehingga harus melarikan diri ke negara tetangga, termasuk Indonesia. Akan tetapi, polemik terkait isu keberadaan pengungsi Rohigya di Indonesia masih menunjukkan adanya perbedaan pendapat antara kelompok yang mendukung dan menentang, serta pendapat atau opini tersebut dapat berubah setiap tahunnya. Untuk itu, penelitian ini bertujuan untuk mengetahui dinamika opini publik Indonesia terkait Rohingya dari tahun 2015-2023 melalui Twitter, serta mengetahui topik-topik yang sering dibicarakan tiap tahunnya. Penelitian ini membandingkan akurasi antara leksikon InSet dengan pelabelan manual sebagai pengembangan dataset dan juga membandingkan antara metode klasifikasi menggunakan algoritma traditional machine learning (NB, SVM, LR, dan DT) dengan algoritma deep learning (LSTM, GRU, LSTM-GRU, dan GRU-LSTM). Untuk pemodelan topik, penelitian ini menggunakan algoritma LDA. Hasil penelitian menunjukkan bahwa akurasi leksikon InSet sebesar 44,64%, sehingga pelabelan dengan leksikon InSet belum dapat menggantikan pelabelan manual. Adapun performa klasifikasi terbaik adalah dengan algoritma traditional machine learning LR yang memiliki akurasi sebesar 0,620 dan f1-score sebesar 0.622. Visualisasi time series sentimen menunjukkan pada tahun 2015 - 2016 sentimen positif lebih banyak dibandingkan sentimen negatif dan netral, kemudian pada tahun 2017 – 2020 sentimen netral dan negatif hampir sama, sedangkan jumlah sentimen positif semakin menurun. Selanjutnya tahun 2021 – 2023, jumlah sentimen negatif naik signifikan dibanding sentimen positif yang terus turun. Adapun topik-topik yang sering dibicarakan untuk sentimen positif adalah adanya dukungan masyarakat Indonesia kepada Rohingya dalam memberikan bantuan dan tempat perlindungan, sedangkan untuk topik negatif terkait adanya kekhawatiran akan dampak sosial, ekonomi, serta keamanan yang mungkin ditimbulkan oleh kehadiran pengungsi Rohingya.

The Rohingya are an ethnic minority who currently still face persecution and discrimination in Myanmar, so they have to flee to neighboring countries, including Indonesia. However, the polemic regarding the issue of the existence of Rohigya refugees in Indonesia still shows that there are differences of opinion between groups who support and oppose, and these opinions can change every year. For this reason, this research aims to determine the dynamics of Indonesian public opinion regarding the Rohingya from 2015-2023 via Twitter, as well as finding out the topics that are often discussed each year. This research compares the accuracy of the InSet lexicon with manual labeling as a dataset development. Apart from that, this research also compares classification methods using traditional machine learning algorithms (NB, SVM, LR, and DT) and deep learning algorithms (LSTM, GRU, LSTM-GRU, and GRU-LSTM). For topic modeling, this research uses the LDA algorithm. The research results show that the accuracy of the InSet lexicon is 44.64%, so that labeling with the InSet lexicon cannot replace manual labeling. The best classification performance is with the traditional machine learning LR algorithm which has an accuracy of 0.620 and an f1-score of 0.622. Time series visualization of sentiment shows that in 2015 - 2016 there were more positive sentiments than negative and neutral sentiments, then in 2017 - 2020 neutral and negative sentiments were almost the same, while the number of positive sentiments decreased. Furthermore, in 2021 – 2023, the number of negative sentiments will increase significantly compared to positive sentiment which continues to fall. The topics that are often discussed for positive sentiment are the Indonesian people's support for the Rohingya in providing assistance and shelter, while the negative topics are related to concerns about the social, economic and security impacts that may be caused by the presence of Rohingya refugees."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Kerenza Doxolodeo
"Konstruksi dataset QA membutuhkan akses ke sumber daya dan finansial yang tidak kecil, sehingga dataset untuk bahasa-bahasa yang kurang dipelajari seperti Ba- hasa Indonesia minim. Studi ini mengkonstruksi dataset QA Indonesia yang dibuat secara otomatis dari awal hingga akhir. Proses dimulai dengan mengambil tripel dari Wikidata dan mengkonversikan tripel tersebut menjadi pertanyaan menggu- nakan CFG. Teks konteks dicari dari korpus Wikipedia Bahasa Indonesia dengan heuristik untuk mencari teks yang sesuai. Pertanyaan-pertanyaan tersebut dival- idasi dengan model M-BERT yang fungsinya sebagai proxy model yang menilai kelayakan pertanyaan. Dataset terdiri dari 134 ribu baris pertanyaan simpel dan 60 ribu pertanyaan kompleks yang menggandung dua buah fakta dalam satu per- tanyaan. Untuk pertanyaan simpel dataset mendapatkan evaluasi yang mirip oleh manusia (72% AC-IQuAD vs 67% SQuAD terjemahan) dan model QA Indonesia yang terbaik adalah yang menggabungkan dataset SQuAD Inggris dan AC-IQuAD (F1 57.03 terhadap dataset TydiQA).

Construction of QA datasets requires access to considerable resources and fi- nance, so datasets for less-learned languages such as Indonesian are scarce. This study constructs an Indonesian QA dataset that is generated automatically end- to-end. The process begins by taking triples from Wikidata and converting those triples into questions using CFG. The context text is searched from the Indonesian Wikipedia corpus with heuristics to find the appropriate text. These questions were validated with the M-BERT model which functions as a proxy model that assesses the feasibility of questions. The dataset consists of 134 thousand lines of simple questions and 60 thousand complex questions containing two facts in one ques- tion. For simple queries the datasets received similar evaluations by humans (72% AC-IQuAD vs 67% translated SQuAD) and the best Indonesian QA model was the one combining English SQuAD and AC-IQuAD datasets (F1 57.03 against TydiQA dataset)."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhamad Adamy Rayeuk
"Developer aplikasi web biasanya akan meniru dan memodifikasi sistem yang sudah ada. Hal tersebut terjadi karena sistem aplikasi web tidak jauh berbeda satu dengan yang lainnya. Namun, masalah timbul saat sistem yang ditiru mengalami perubahan. Aplikasi web yang menggunakan sistem tersebut perlu mengalami perubahan dan penyesuaian kembali. Permasalahan tersebut dapat diselesaikan dengan paradigma pengembangan bernama Software Product Line Engineering (SPLE). SPLE melihat domain dan variasi sistem yang dimiliki domain sebagai suatu product family yang mengklasifikasikan produk-produknya berdasarkan kemiripan dan perbedaan antara setiap variasi produk. Salah satu studi kasus penerapan SPLE pada aplikasi web adalah Amanah, yaitu sebuah web generator untuk organisasi amal yang memanfaatkan teknologi Prices-IDE untuk membangkitkan aplikasi web. Amanah menggunakan WinVMJ untuk membangkitkan back end dan IFML untuk abstraksi front end dari produk Amanah. Fitur yang dihasilkan penelitian ini dievaluasi mengguanakan user acceptance test dan six quality criteria. WinVMJ dan IFML berhasil menjadi tool yang menerapkan paradigma SPLE dalam pengunaannya. Dihasilkan UML diagram dari pengembangan fitur pada penelitian ini. Selain itu, adanya penambahan fitur pada WinVMJ untuk peningkatan WinVMJ sebagai web framework.

Web application developers will usually clone and modify existing systems. It happens because web application systems are not much different from one another. However, problems arise when the cloned system change. The web application that uses the system needs to readjust following the changes. We can use a development paradigm called Software Product Line Engineering (SPLE) to solve that problem. SPLE sees the domain and the variety of systems owned by the domain as a product family that classifies its products based on the commonalities and variabilities between each product variation. One of the case studies of SPLE application in development of web applications is Amanah, a web generator for charity organizations that uses Prices-IDE technology to generate web applications. Amanah uses WinVMJ to produce the back end and IFML to abstract the front end. The features developed in this research were evaluated using six quality criteria and user acceptance tests. WinVMJ and IFML succeeded in becoming tools that apply the SPLE paradigm. This research also produced UML diagrams for the developed features. In addition, there are improvements in WinVMJ as a web framework."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kezia Sulami
"Machine Learning (ML) sebagai bagian dari Artificial Intelligence (AI) telah membuat komputer mampu melakukan hal-hal yang membutuhkan kecerdasan manusia secara otomatis. Binarized Neural Network (BNN) merupakan arsitektur ML modern yang memiliki keunggulan yakni penggunaan memori yang efisien dan performa yang baik. Namun, seperti neural network pada umumnya, BNN juga merupakan black-box model yang memiliki kesulitan dalam menjelaskan prediksi yang dihasilkan. Penelitian ini menggunakan teknik abduction untuk memperoleh minimal explanations, dalam bentuk himpunan pasangan fitur dan nilainya, dari hasil prediksi BNN. BNN dimodelkan sebagai model Mixed-Integer Linear Programming (MILP) dan selanjutnya disederhanakan menjadi model Integer Linear Programming (ILP) yang merupakan bentuk formal agar dapat dilakukan teknik abduction. Hasil penelitian menunjukkan bahwa teknik abduction dapat digunakan untuk menjelaskan hasil prediksi BNN. Penelitian ini juga menerapkan teknik abduction untuk menghasilkan penjelasan subset-minimal pada hasil prediksi BNN untuk beberapa dataset.

Machine Learning (ML) as part of Artificial Intelligence (AI) has enabled computers to do things that require human intelligence automatically. Binarized Neural Network (BNN) is a modern ML architecture that has some advantages: efficient use of memory and good performance. However, like other neural networks in general, BNN is also a black-box model that has difficulties in explaining the resulting predictions. This research employs the abduction technique to obtain minimal explanations, that is a set of pairs of features and its values, from a BNN prediction. BNN is modeled as a Mixed-Integer Linear Programming (MILP) model and then further simplified into an Integer Linear Programming (ILP) model which is a suitable formalism for finding explanations using abduction. This research shows that the abduction technique can be used to explain BNN predictions. Furthermore, this research applies the abduction technique to produce subset-minimal explanations on BNN predictions for several datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7   >>