Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Mohammad Firman Fadillah
"ABSTRAK
Skripsi ini akan membahas implementasi perancangan aplikasi data mining yang ditulis menggunakan bahasa pemrograman Java untuk mendapatkan konten media sosial terkait sentimen mengenai pengalaman pembelajaran dari pelajar di Indonesia. Aplikasi Java yang dirancang akan meminta masukan kata kunci pencarian kepada pengguna, untuk kemudian dilakukan pencarian menggunakan library twitter4j untuk dapat mengakses endpoint search/tweets.json yang terdapat pada Twitter core API. Setelah melakukan pencarian konten media sosial, aplikasi akan menuliskan hasil pencarian ke dalam berkas spreadsheet untuk dianalisis lebih lanjut. Hasil dari spreadsheet tersebut kemudian dilakukan perhitungan untuk masing-masing keyword nya dan ada pengkategorian lebih lanjut untuk sentimen negatif. Hasil dari pengambilan data yang berjumlah 2000 tweet menunjukkan sentimen positif mempunyai persentase paling sedikit, yaitu 596 (30%), sentimen negatif berjumlah 600 (30%) dan sentimen netral persentasenya paling besar, yaitu 804 (40%). Lalu untuk pengkategorian sentimen negatif, kategori 3 yaitu Emosi Negatif berjumlah paling banyak dengan jumlah 303 tweet (50%). Sedangkan kategori 1, 2, 4 dan 5 masing-masing mempunyai persentase 12%, 11%, 9% dan 18%.

ABSTRACT
This thesis discuss about data mining application design written in Java language program to get social media content regarding learning experience sentiment from student across Indonesia. Designed Java application will inquire searching keywords from users and then it will search using library twitter4j to access endpoint search/tweets.json in Twitter core API. After searching process, the application will write the search result into spreadsheet for further analysis. The data result saved in the spreadsheet will be compute for each keywords and there will be further classification for negative sentiment result. Sample from 2000 tweets shows positive sentiment has the least percentage, about 596 tweets (30%), negative sentiment has 600 tweets (30%) and neutral sentiment has the biggest value, 804 tweets (40%). For negative sentiment classification, Negative Emotion as category 3 has the most tweets with 304 tweets (50%). Meanwhile, category 1,2,4 and 5 have percentages with each value consist 12%, 11%, 9% and 18%.
"
Fakultas Teknik Universitas Indonesia, 2016
S62667
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Twitter is a social media application, which can give a sign for identifying user emotion. Identification of user emotion can be utilized in commercial domain, health, politic, and security problems. The problem of emotion identification in twit is the unstructured short text messages which lead the difficulty to figure out main features. In this paper, we propose a new framework for identifying the tendency of user emotions using specific features, i.e. hashtag, emoji, emoticon, and adjective term. Preprocessing is applied in the first phase, and then user emotions are identified by means of classification method using kNN. The proposed method can achieve good results, near ground truth, with accuracy of 92%.

Sebuah tweet dapat mengandung dan menggambarkan kecenderungan emosi seseorang. Penelitian me-ngenai identifikasi emosi dapat diterapkan pada domain komersial, kesehatan, politik, dan keamanan. Teks pendek yang tidak terstruktur dalam data tweet menyebabkan sulit menemukan fitur-fitur penting. Pada pe-nelitian ini diusulkan sebuah model baru untuk mengidentifikasi kecenderungan emosi pengguna Twitter menggunakan fitur khusus yaitu hashtag, emoji, emoticon, dan kata sifat. Tahap awal dilakukan prepro-cessing, kemudian identifikasi emosi pengguna dengan metode klasifikasi. Hasil penelitian ini mempunyai kecenderungan emosi yang mendekati ground truth dengan akurasi 92% menggunakan kNN."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information and Technology, Department of Informatics, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Anwar Farihin
"Pengenalan Entitas Bernama (NER) telah diteliti cukup dalam, khususnya pada korpus berbahasa Inggris. Namun, penelitian NER pada korpus twit berbahasa Indonesia masih sangat sedikit karena minimnya dataset yang tersedia secara publik. BERT sebagai salah satu model state-of-the-art pada permasalahan NER belum diimplementasikan pada korpus twit berbahasa Indonesia. Kontribusi kami pada penelitian ini adalah mengembangkan dataset NER baru pada korpus twit berbahasa Indonesia sebanyak 7.426 twit, serta melakukan eksperimen pada model CRF dan BERT pada dataset tersebut. Pada akhirnya, model terbaik pada penelitian ini menghasilkan nilai F1 72,35% pada evaluasi tingkat token, serta nilai F1 79,27% (partial match) dan 75,40% (exact match) pada evaluasi tingkat entitas.

Named Entity Recognition (NER) has been extensively researched, primarily for understanding the English corpus. However, there has been very little NER research for understanding Indonesian-language tweet corpus due to the lack of publicly available datasets. As one of the state-of-the-art models in NER, BERT has not yet been implemented in the Indonesian-language tweet corpus. Our contribution to this research is to develop a new NER dataset on the corpus of 7.426 Indonesian-language tweets and to conduct experiments on the CRF and BERT models on the dataset. In the end, the best model of this research resulted in an F1 score of 72,35% at the token level evaluation and an F1 score of 79,27% (partial match) and 75,40% (exact match) at the entity level evaluation."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhanika Jeihan Aguinta
"PT XYZ merupakan salah satu agency pemasaran digital yang berfokus melakukan proses pemasaran melalui berbagai platform media sosial untuk perusahaan-perusahaan dari berbagai industri. Salah satu layanan yang disediakan oleh PT XYZ adalah layanan data & insight analysis, termasuk untuk melakukan pemantauan percakapan media sosial dari brand beserta kompetitornya dengan menganalisis sentimen dan topik untuk memenuhi permintaan klien. Salah satu brand pada industri smartphone yang menjadi klien dari PT XYZ memiliki produk yang banyak, dimana masing-masing produk dan kompetitornya dilakukan pemantauan secara bersamaan. Dengan banyaknya percakapan yang dihasilkan oleh jumlah produk yang banyak, proses pengerjaan untuk analisis menjadi terbatas dan terlalu menghabiskan banyak waktu karena masih menggunakan proses pelabelan secara manual. Oleh karena itu, sistem otomatis diusulkan untuk PT XYZ dengan melakukan analisis sentimen berbasis aspek yang bertujuan untuk memudahkan dan mempersingkat proses pengerjaan pemantauan. Data yang digunakan adalah data mengenai smartphone pada Twitter yang berjumlah 11.641 tweet dalam periode akhir tahun 2022. Data yang terkumpul memiliki kondisi imbalance class, sehingga metode penanganan imbalance class SMOTE digunakan. Tahap pra-pemrosesan; ekstraksi fitur dengan memanfaatkan leksikon, POS tagging dan TF-IDF; dilakukan sebelum data dimodelkan dengan algoritma pembelajaran mesin. Penelitian ini mendapatkan hasil bahwa Support Vector Machine (SVM) dengan SMOTE memiliki hasil evaluasi yang lebih tinggi dibandingkan dengan Naïve Bayes, baik untuk klasifikasi sentimen dan juga aspek. Hasil evaluasi SVM pada klasifikasi sentimen adalah sebesar 0,92 untuk setiap metrik akurasi, precision, recall, dan f1-score. Sedangkan untuk klasifikasi aspek, SVM mendapatkan hasil evaluasi sebesar 0,79 untuk akurasi, precision, dan recall, serta 0,77 untuk f1-score. Masalah imbalance class pada data memengaruhi hasil akhir klasifikasi, terutama untuk klasifikasi aspek.

PT XYZ is a digital marketing agency that specializes in marketing strategies through various social media platforms for businesses across multiple industries. Data and insight analysis is one of the services offered by PT XYZ, which includes monitoring social media conversations from brands and their competitors by analyzing sentiments and topics based on client needs. One of PT XYZ's clients in the smartphone industry has a large number of products, and each product and its competitors are monitored simultaneously. With so many conversations generated by a large number of products, the analysis process is constrained and time-consuming because it still relies on a human tagging approach. Therefore, an automated approach based on aspect-based sentiment analysis is presented for PT XYZ in order to simplify and shorten the monitoring process. The data used is Twitter data regarding smartphones, totaling 11,641 tweets in the near- end period of 2022. Because the gathered data has an imbalance class condition, the SMOTE class imbalance handling method is applied. Before the data is modeled with machine learning techniques, pre-processing and feature extraction are performed using the lexicon, POS tagging, and TF-IDF. This study discovered that the Support Vector Machine (SVM) with SMOTE outperforms Nave Bayes in both sentiment and aspect classification. The accuracy, precision, recall, and f1-score of the SVM evaluation on sentiment classification were all 0.92. In terms of aspect classification, SVM received an evaluation score of 0.79 for accuracy, precision, and recall; and 0.77 for the f1-score. The issue of class imbalance in the data has an impact on the final classification results, especially for aspect classification."
Depok: 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rizal Setya Perdana
"The popularity of Twitter has attracted spammers to disseminate large amount of spam messages. Preliminary studies had shown that most spam messages were produced automatically by bot. Therefore bot spammer detection can reduce the number of spam messages in Twitter significantly. However, to the best of our knowledge, few researches have focused in detecting Twitter bot spam-mer. Thus, this paper proposes a novel approach to differentiate between bot spammer and legitimate user accounts using time interval entropy and tweet similarity. Timestamp collections are utilized to calculate the time interval entropy of each user. Uni-gram matching-based similarity will be used to calculate tweet similarity. Datasets are crawled from Twitter containing both normal and spammer accounts. Experimental results showed that legitimate user may exhibit regular behavior in posting tweet as bot spammer. Several legitimate users are also detected to post similar tweets. Therefore it is less optimal to detect bot spammer using one of those features only. However, combination of both features gives better classification result. Precision, recall, and f-measure of the proposed method reached 85.71%, 94.74% and 90% respectively. It outperforms precision, recall, and f-measure of method which only uses either time interval entropy or tweet similarity.

Ketenaran Twitter mengundang spammer untuk menggunakannya dalam penyebarluasan pesan spam. Penelitian terdahulu menunjukkan bahwa kebanyakan pesan spam dihasilkan secara otomatis oleh bot. Deteksi bot spammer akan dapat mengurangi jumlah pesan spam pada Twitter secara signifikan. Akan tetapi, sejauh yang penulis ketahui, masih sedikit penelitian yang fokus dalam deteksi bot spammer pada Twitter. Sehingga, paper ini mengusulkan pendekatan baru untuk membedakan antara bot spammer dan pengguna sah menggunakan time interval entropy dan kemiripan antar tweet. Kum-pulan timestamp digunakan untuk menghitung time interval entropy dari tiap akun pengguna. Uni-gram matching-based similarity akan digunakan untuk menghitung kemiripan antar tweet. Dataset diambil dari Twitter yang terdiri atas kumpulan akun normal dan akun yang terindikasi sebagai bot spammer. Hasil percobaan menunjukkan beberapa pengguna sah Twitter juga memiliki kebiasaan yang teratur dalam menghasilkan tweet sebagaimana bot spammer. Beberapa pengguna sah juga ter-deteksi menghasilkan tweet yang mirip. Oleh karena itu, deteksi bot spammer menggunakan satu fitur saja akan kurang optimal. Akan tetapi, kombinasi atas kedua fitur tersebut memberikan hasil klasifi-kasi yang lebih baik. Presisi, recall, dan f-measure dari metode yang diusulkan mencapai 85.71%, 94.74% dan 90%. Nilai ini melampaui presisi, recall, dan f-measure dari metode yang hanya meng-gunakan baik time interval entropy maupun kemiripan antar tweet saja."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Information Technology, Department of Informatics Engineering, 2015
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Dhiya Ul-Haq
"In 2017, obesity incidence rate in Indonesia significantly increased from 2014. The rise of obesity incidence rate in Indonesia also expected to continue in the future. Recent studies in developed countries shows that areas with overabundant access to unhealthy foods provider tends to have a higher obesity incidence rate. This phenomenon, known as food swamps, correlates with obesity by influencing the people to consume more unhealthy foods. However, research to prove that statement in Indonesia seems impossible to execute due to the absence of individual food choice data in Indonesia`s mainstream surveys. This study tries to employ Twitter and Google Places data as an alternative data source to fill the absence of data that mentioned before. Logistic regression results show that food swamps area has a significant positive correlation with the popularity of unhealthy foods and the engagement on unhealthy foods. Therefore, it can be concluded that the results in this study indicates the influence of food swamps area on peoples choice towards unhealthy foods.

Pada tahun 2017, angka obesitas di Indonesia meningkat secara signifikan dari tahun 2014. Kenaikan tersebut diprediksi akan terus berlanjut di masa depan. Studi terbaru di negara-negara maju menunjukkan bahwa daerah dengan akses berlebihan terhadap penjual makanan yang tidak sehat cenderung memiliki angka obesitas yang lebih tinggi. Fenomena ini, dikenal sebagai food swamps, berkorelasi dengan obesitas dengan cara mempengaruhi orang-orang untuk mengkonsumsi lebih banyak makanan yang tidak sehat. Namun, penelitian untuk membuktikan pernyataan tersebut di Indonesia terlihat tidak mungkin dilaksanakan karena tidak adanya data pilihan makanan individu dalam survei-survei skala besar utama di Indonesia. Penelitian ini mencoba menggunakan data Twitter dan Google Places sebagai sumber data alternatif untuk mengisi ketiadaan data yang disebutkan sebelumnya. Hasil regresi logistik menunjukkan bahwa daerah food swamps memiliki korelasi positif yang signifikan dengan popularitas makanan tidak sehat dan sentiment positif terhadap makanan tidak sehat. Oleh karena itu, dapat disimpulkan bahwa hasil dalam penelitian ini mengindikasikan hubungan antara daerah food swamps terhadap kecenderungan orang untuk lebih memilih makanan yang tidak sehat."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library