Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Selly Anastassia Amellia Kharis
"Kanker merupakan kelompok penyakit yang ditandai dengan pertumbuhan dan penyebaran sel-sel abnormal yang tidak terkendali. Jika penyebaran sel tersebut tidak terkendali, hal ini dapat menyebabkan kematian. Berdasarkan American Cancer Society, pendeteksian dini terhadap sel kanker dapat meningkatkan angka harapan hidup seorang pasien lebih dari 97 . Banyak penelitian yang telah meneliti mengenai klasifikasi kanker menggunakan microarray data. Microarray data terdiri dari ribuan fitur gen namun hanya memiliki puluhan atau ratusan sampel. Hal tersebut dapat menurunkan akurasi klasifikasi sehingga perlu dilakukannya pemilihan fitur sebelum proses klasifikasi.
Pada penelitian ini dilakukan dua tahap pemilihan fitur. Pertama, support vector machine recursive feature elimination SVM-RFE digunakan untuk prefilter gen. Kedua, hasil pemilihan fitur SVM-RFE diseleksi kembali dengan menggunakan artificial bee colony ABC yang merupakan algoritma optimisasi berdasarkan perilaku lebah madu. Penelitian ini menggunakan dua dataset, yaitu data kanker paru-paru Michigan dan Ontario dari Kent Ridge Biomedical Dataset.
Hasil percobaan dengan menggunakan SVM-RFE dan ABC menunjukkan nilai akurasi klasifikasi yang lebih tinggi daripada tanpa pemilihan fitur, SVM-RFE, dan ABC, yaitu 98 untuk data kanker paru-paru Michigan dengan menggunakan 100 fitur dan 97 untuk data kanker paru-paru Ontario dengan menggunakan 70 fitur.

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Based on American Cancer Society, early detection of cancerous cells can increase survival rates for patients by more than 97 . Many study showed new aspect of cancer classification based microarray data. Microarray data are composed of many thousands of features genes and from tens to hundreds of instances. It can decrease classification accuracy so feature selection is needed before the classification process
In this paper, we propose two stages feature selection. First, support vector machine recursive feature elimination recursive feature elimination SVM RFE is used to prefilter the genes. Second, the SVM RFE features selection result is selected again using Artificial Bee Colony ABC which is an optimization algorithm based on a particular intelligent behavior of honeybee swarms. This research conducted experiments on Ontario and Michigan Lung Cancer Data from Kent Ridge Biomedical Dataset.
Experiment results demonstrate that this approach provides a higher classification accuracy rate than without feature selection, SVM RFE, and ABC, 98 for Michigan lung cancer dataset with using 100 features and 97 for Ontario lung cancer dataset with using 70 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49733
UI - Tesis Membership  Universitas Indonesia Library
cover
Vinezha Panca
"ABSTRAK
Kanker merupakan salah satu penyebab kematian terbesar di seluruh dunia. Secara khusus, kanker otak adalah kanker yang terjadi pada sistem saraf pusat. Salah satu hal yang dapat dilakukan untuk penelitian kanker otak menggunakan machine learning adalah melakukan pendeteksian jenis kanker otak dengan memanfaatkan microarray data. Permasalahan tersebut merupakan masalah klasifikasi multikelas. Dengan menggunakan pendekatan one versus one, akan terbentuk sebanyak k k-1 /2 masalah dua kelas, di mana k menunjukkan jumlah kelas. Karena data kanker otak memiliki fitur yang sangat banyak, perlu dilakukan seleksi fitur. Pada penelitian ini, akan diimplementasikan metode Multiple Multiclass Support Vector Machine Recursive Feature Elimination MMSVM-RFE sebagai metode seleksi fitur, dan Twin Support Vector Machine TWSVM sebagai metode klasifikasi. Pada metode MMSVM-RFE dilakukan pelatihan SVM-RFE pada setiap masalah dua kelas, sehingga setiap masalah dua kelas memiliki pengurutan fitur masing-masing. Sebagai metode klasifikasi, TWSVM memiliki tujuan untuk mencari hyperplane masing ndash; masing kelas sedemikian sehingga data kelas satu sedekat mungkin terhadap suatu hyperplane namun sejauh mungkin dengan hyperplane lainnya. Rata-rata akurasi tertinggi pada simulasi menggunakan kernel linear pada MMSVM-RFE dan kernel linear pada TWSVM adalah 95,33 dengan menggunakan 200 fitur. Rata-rata akurasi tertinggi pada simulasi menggunakan kernel linear pada MMSVM-RFE dan kernel RBF pada TWSVM adalah 87 dengan 70 fitur. Sedangkan apabila proses validasi juga dilakukan pada seleksi fitur, rata-rata akurasi tertinggi yang diperoleh adalah 90,67 dengan menggunakan 90 fitur.

ABSTRACT
Cancer is one of main causes of death worldwide. Brain cancer is a type of cancer which occurs at central nervous system. Taking advantage from microarray data, machine learning methods can be applied to help brain cancer prediction according to its types. This problem can be referred as a multiclass classification problem. Using one versus one approach, the multiclass problem with k classes can be transformed into k k 1 2 binary class problems. The huge amount of features makes it necessary to use feature selection. In this research, Multiple Multiclass Support Vector Machine Recursive Feature Elimination MMSVM RFE method is implemented as the feature selection method, and Twin Support Vector Machine TWSVM method is implemented as the classification method. The main concept of MMSVM RFE is to train SVM RFE at each binary problem so that each binary problem will have their own arrangements of feature. As a classification method, TWSVM is trained to find two hyperplanes, each representative of its own class. The data of one class must be as near as possible from its representative hyperplane while also must be as far as possible from the other hyperplane. In the simulation which uses linear kernel on MMSVM RFE and linear kernel on TWSVM, the highest average accuracy is 95,33 , using 200 features. In the simulation which uses linear kernel on MMSVM RFE and RBF kernel on TWSVM, the highest average accuracy is 87 , using 70 features. In the case where the feature selection process is included in doing validation, the highest average accuracy is 90,67 , using 90 features."
2016
S66302
UI - Skripsi Membership  Universitas Indonesia Library