Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Nana Sutarna
"Model sistem tata udara presisi dimodelkan sebagai sebuah sistem multivariable dengan dua output yaitu temperature dan kelembaban dan dua input yaitu kecepatan putaran motor dan bukaan valve. Pada model ini ada masalah coupling diantara input dan outputnya. Model Predictive Control (MPC) adalah salah satu cara untuk mengatasi masalah coupling dalam sistem multivariable. Pengendali MPC dirancang tanpa constraints untuk menentukan agoritma yang handal.
Dari hasil simulasi nampak bahwa parameter-parameter pengendali yang terbaik adalah horizon Hp=10, Hu=4, matrik pembobotan R=0.1, dan Q=3. Dengan parameter ini respon keluarannya mengikuti sinyal set point.

Precision Air Conditioning model is defined as a multivariable system with two outputs Temperature and humidity and two inputs, the speed of motor compressor and valve opening. There will be a coupling problem between inputs and outputs. Model Predictive control (MPC) is a way to counter a coupling problems in multivariable system. MPC controller is designed without constraints addition to determine the reliable algorithm.
From the simulation result, it can be seen that the best parameters controller are horizon Hp=10, Hu=4, weighting matrix R=0.1 and Q=3. In this parameter, the output response equal to the trajectory or set point signal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25933
UI - Tesis Open  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi merupakan mesin refrigerasi yang digunakan di ruang pusat data untuk menjaga temperatur di dalam kabinet berkisar antara 20º - 22ºC, dan kelembaban antara 45-55%. Untuk mencapai keadaan tersebut, delapan variabel tak terukur belum dapat diestimasi sehingga dibutuhkan observer. Proses estimasi state dilakukan menggunakan model ruang keadaan. Persamaan untuk Filter Kalman dibagi menjadi persamaan time update dan measurement update. Penggunaan metode ini diharapkan diperoleh nilai matriks prediction error covarians yang konvergen pada nilai sekecil mungkin. Selain itu juga dibandingkan state hasil estimasi dengan state aktual model untuk mengetahui nilai kuadrat kesalahan estimasi yang terjadi.

Precision air conditioning is a refrigeration machine that used in the data center to keep the temperature inside the cabinet ranged from 20 º - 22 º C, and humidity between 45-55%. To reach that state, the eight variables not measured can not be estimated so that the observer is required. State estimation process is done using a state space model. The equation for the Kalman Filter equations are divided into time update and measurement update. Use of this method is expected to obtain the prediction error matrix covarians which converges on the value as small as possible. It also compared to the estimated state with the actual state of the model to determine the value of the square of estimation error that occurred."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42771
UI - Skripsi Open  Universitas Indonesia Library
cover
Christian Timothy
"Penelitian ini akan mengembangkan pengendali MIMO Model Predictive Control (MPC) dengan constraints serta ditambahkannya fungsi Laguerre. Metode ini akan diterapkan pada sistem tata udara presisi atau biasa disebut sistem Precision Air Conditioning (PAC) dengan dua masukan, yaitu putaran kipas dan kompresor, dan dua keluaran, yaitu temperatur dan kelembapan relatif. Permasalahan yang ada pada proses kendali PAC ini ialah tetap menjaga temperatur dan kelembaban dari suatu sistem refrigasi sesuai dengan yang hasil yang diinginkan, yaitu pada temperatur 20-25 oC dan kelembaban relatif 40-55%. Penelitian ini adalah pengembangan dari penelitian sebelumnya yang tidak bisa mengendalikan sistem PAC dengan hasil yang memuaskan. Metode identifikasi yang digunakan menggunakan metode PO-MOESP untuk mencari model A, B, C, D dan menjadi masukan pengendali prediktif. Fungsi Laguerre ditambahkan untuk mengurangi waktu komputasi ke dalam MPC. Penelitian ini menggunakan software Matlab untuk melakukan proses simulasinya. Hasil keluaran pengendali MPC constraints biasa akan dibandingkan dengan pengendali MPC constraints dengan fungsi Laguerre.

This research will aim to develop MIMO Model Predictive Control (MPC) controller with constraints added with Laguerre function. This method will be applied to Precision Air Condition (PAC) system with two inputs : fan and compressor speed; and two outputs : temperature and humidity. The problem in this PAC control process is to maintain temperature and humidity of the refrigeration system as desired, which is temperature 20-25oC and relative humidity 40-55 %. This research is developed from previous research, which could not control PAC system with feasible result. System identification used in this research is PO-MOESP method to find A, B, C, D model as input for predictive controller process. Laguerre Function was added for reducing computation time into MPC Controller. This research use MatLab software to run the process simulation model. Output of the conventional MPC controller with constraints will be compared to MPC controller with constraints and Laguerre function."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54802
UI - Skripsi Membership  Universitas Indonesia Library
cover
Valentina Galuh Andang Asmara
"Sistem tata udara presisi merupakan komponen yang sangat penting dalam sebuah ruang pusat data untuk menjaga agar perangkat yang disimpan tidak mengalami kerusakan pada waktu singkat. Sistem ini merupakan sistem multivariabel dan diperlukan untuk menjaga suhu dan kelembaban ruang pusat data pada batasan yang sesuai dengan kondisi kerja peralatan IT, sehingga diperlukan pengendali cerdas yang mampu bekerja pada batasan tertentu dan mampu menangani sistem multivariabel. Selain itu, pengendali tersebut juga harus mampu menangani karakteristik sistem tata udara presisi yang nonlinier. Oleh karena itu, pengendali MPC (Model Predictive Control) digunakan untuk mengendalikan sistem tersebut.
Pengendali MPC merupakan pengendali yang menggunakan model proses secara eksplisit dalam penghitungan sinyal kendalinya. Model linier digunakan untuk menghitung prediksi keluaran sistem nonlinier dan menghitung besar sinyal kendali agar keluaran sistem nonlinier sesuai dengan acuan. Agar besar kesalahan prediksi keluaran dari model dan keluaran sesungguhnya dari sistem dapat diminimalisasi maka digunakan model ruang keadaan multimodel yang diperoleh melalui metode identifikasi least square.
Model yang diperoleh dari hasil identifikasi dapat digunakan untuk pengendalian MPC sebab memiliki nilai 𝐽𝑒𝑒 dan FPE yang rendah (< 10−5), nilai eigen berada di dalam unit circle, serta memiliki sifat fully controllable dan fully observable. Pengendali MPC berbasis multimodel linier kemudian dirancang untuk mengendalikan sistem tata udara presisi yang bersifat MISO (multi input single output), dengan keluaran berupa temperatur udara masukan kabinet (𝑇𝑖𝑛,𝑐𝑎𝑏). Untuk memperoleh pengendalian yang terbaik, pengendali MPC disimulasikan pada sistem linier dan nonlinier. Variasi nilai 𝐻𝑝, 𝐻𝑢, Q, dan R diberikan untuk mengetahui pengaruh perubahan nilai parameter pengendali MPC terhadap karakteristik sinyal kendali masukan dan sinyal respon keluaran sistem, serta waktu komputasi dan nilai loss function. Simulasi pengendalian MPC menunjukkan hasil yang baik pada nilai 𝐻𝑝 = 𝐻𝑢 = 6, 𝐐 = 50, dan 𝐑 = 5 untuk sistem linier, dan nilai 𝐻𝑝 = 12, 𝐻𝑢 = 3, 𝐐 = 70, dan 𝐑 = 0.5 untuk sistem nonlinier.

Precision air conditioning is a vital component in a data center to keep the stored devices from failures. This system is a multivariable system and needed to keep the temperature and humidity of a data center in a certain constraints which is suitable for IT devices operating condition. Hence, an intelligent controller which can take constraints into account and handle multivariable system is needed. Furthermore, the controller must be capable to handle nonlinear characteristic of such system. Thus, Model Predictive Controller (MPC) is used to control such systems.
MPC is a controller that used the model of a process explicitly to compute the control signal. The linear model is used to predict the output of nonlinear system and calculate the control signal to meet the given target. To minimize error between predicted output from the model and the actual output of the plant, double-stage state space model is used.
The model is identified using least square method and can be used for system control using MPC due to its low 𝐽𝑒𝑒 and FPE (< 10−5), its eigenvalues located inside the unit circle, and its characteristics which is fully controllable and fully observable. MPC based on linear multimodel linear is designed to control PAC system which is a MISO (Multiple Input Single Output) system, which output is the temperature of input air to cabinet (𝑇𝑖𝑛,𝑐𝑎𝑏). In order to obtain the best control action, MPC is simulated in linear and nonlinear system. The value of controller parameters 𝐻𝑝, 𝐻𝑢, Q, and R is varied to study the effect of changes in parameter value to the characteristic of input control signal and system responds, input signal computing time and the value of loss function. The best simulation result is obtained at 𝐻𝑝 = 𝐻𝑢 = 6, 𝐐 = 50, and 𝐑 = 5 for linear system, and 𝐻𝑝 = 12, 𝐻𝑢 = 3, 𝐐 = 70, and 𝐑 = 0.5 for nonlinear system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56347
UI - Skripsi Membership  Universitas Indonesia Library