Ditemukan 4 dokumen yang sesuai dengan query
Raden Roro Shalsabila Alwaafi Putriandra
"Dalam studi statistik, mengukur ketergantungan antar variabel sering kali diperlukan untuk memahami perilaku dari variabel-variabel tersebut. Pada skripsi ini, untuk merepresentasikan ketergantungan antar variabel akan digunakan model copula. Copula diterapkan dalam memodelkan ketergantungan pada studi keuangan dan statistik, bahkan diperkenalkan dalam studi aktuaria untuk menghitung total kerugian pada industri asuransi kendaraan bermotor. Perusahaan asuransi, sebagai pihak yang menyediakan asuransi kendaraan bermotor, harus bisa memprediksi kemungkinan kerugian yang akan terjadi guna memprediksi kewajiban dan menyusun strategi perusahaan di masa depan. Total kerugian pada asuransi kendaraan bermotor dapat dihitung berdasarkan dua variabel, yaitu frekuensi klaim dan severitas klaim. Kedua variabel tersebut memiliki distribusi yang berbeda dan terkadang ditemukan ketergantungan di antara keduanya sehingga diperlukan model yang dapat menghubungkannya. Dalam beberapa kasus, kerugian juga dipengaruhi oleh faktor-faktor risiko lainnya yang disebut sebagai kovariat. Salah satu metode analisis statistik untuk menggabungkan dua distribusi data berbeda yang saling berhubungan beserta kovariat adalah dengan model copula berbasis regresi. Hal ini dilakukan dengan menggabungkan marginal Generalized Linear Model dari frekuensi dan severitas klaim. Dengan karakteristik yang berbeda dari kedua data maka model dibentuk dengan pendekatan mixed copula. Copula yang digunakan adalah copula Gaussian dan estimasi parameter dilakukan dengan Maximization by Parts (MBP). Berdasarkan parameter yang diperoleh, dapat disimpulkan bahwa terdapat ketergantungan positif antara frekuensi dan rata-rata severitas klaim. Dengan mempertimbangkan unsur dependensi pada frekuensi dan rata-rata severitas klaim, diperoleh nilai ekspektasi total kerugian yang lebih besar dibandingkan tanpa mempetimbangkan unsur dependensi.
In statistical studies, measuring dependencies between variables is often necessary to understand the behavior of those variables. In this thesis, to represent the dependency between variables, the copula model will be used. Copula is applied to modeling dependencies in financial and statistical studies and has even been introduced in actuarial studies to calculate total losses in the motor vehicle insurance industry. Insurance companies, as parties that provide motor vehicle insurance, must be able to predict possible losses that will occur in order to predict liabilities and develop company strategies in the future. Total losses in motor vehicle insurance can be calculated based on two variables, namely claim frequency and claim severity. These two variables have different distributions, and sometimes dependencies are found between them, so a model is needed that can relate them. In some cases, losses are also influenced by other risk factors known as covariates. One statistical analysis method for combining two different, interconnected data distributions and covariates is a regression-based copula model. This is done by combining marginal generalized linear models of claim frequency and severity. With the different characteristics of the two data sets, the model was formed using a mixed copula approach. The copula used is a Gaussian copula, and parameter estimation is done using Maximization by Parts (MBP). Based on the parameters obtained, it can be concluded that there is a positive dependence between the frequency and average claim severity. By considering the dependency element on the frequency and average severity of claims, the expected total loss value is greater than without considering the dependency element."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Samuel Tjahjono
"Asuransi menjadi konsep yang tidak asing lagi dalam memitigasi risiko yang dapat menimbulkan kerugian finansial yang besar bagi pihak tertanggung. Dalam dunia kerja secara khusus, terlihat adanya peningkatan jumlah kecelakaan kerja di Indonesia dari tahun ke tahun. Kecenderungan tersebut memperlihatkan adanya prospek pengembangan asuransi kompensasi pekerja yang menjanjikan. Tentunya, penentuan tarif premi yang cukup sebagai komponen utama dalam kerangka bisnis asuransi memerlukan prediksi severitas klaim yang akurat. Menurut karakteristik data klaim asuransi pekerja, teramati bahwa dataset tersebut berbentuk tabular dan variabel severitas klaim bersifat kontinu. Oleh sebab itu, prediksi severitas klaim dapat dipandang sebagai masalah regresi data tabular. Penelitian ini akan meninjau performa dari TabTransformer, salah satu metode berbasis tranformer dalam melaksanakan regresi yang mengimplementasikan contextual embeddings terhadap fitur-fitur kategorik. Performa sebagai akibat dari penangkapan konteks oleh model TabTransformer akan diukur dan kemudian dibandingkan dengan metode-metode lain yang mendukung penyelesaian permasalahan regresi, seperti Decision Trees Regressor, Random Forest, XGBoost, dan Multi-Layer Perceptron sebagai model dasar TabTransformer.
It is without the need of doubt to believe upon the integrity within the concepts of insurance as a way of mitigating significant financial risks of its own policyholders. As something which existence is prevalent, risks are also found within the workplace environment as seen in the rising numbers of yearly work-related accidents. This tendency suggests promising prospects upon the development and incorporation of worker’s compensation insurance into the business lines of especially reliable insurance companies. As a core part of insurance policies, determining the sufficient rate of premium would require accurate prediction of claim severity. Upon observing the characteristics of claim severity datasets, witnessed are the following two points: that (1) both datasets take a tabular form, and (2) the number of severities is a continuous target variable. Evidently, it shows that the problem to be solved is regression for tabular data. This particular research will focus upon the performance of TabTransformer as a transformer-based machine learning model that incorporates Transformers in providing a degree of interpretability from its capabilities by performing contextual embeddings of the categorical features of our data. The performance will be measured and will further be compared to other models suitable for regression, such as Decision Trees Regressor, Random Forest, XGBoost, and baseline model Multi-Layer Perceptron"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nathanael Desephviasco Tanlie
"Pada penelitian ini, diperkenalkan sebuah distribusi yang disebut distribusi Pareto Positive Stable. Distribusi tersebut merupakan distribusi yang dibangun dengan menggunakan transformasi Laplace dari shape parameter pada distribusi Pareto. Selain itu, distribusi Pareto Positive Stable juga didapat dari tranformasi terhadap distrbusi Weibull. Transformasi yang digunakan adalah transformasi exponentiation serta transformasi multiplication by constant. Distribusi Pareto Positve Stable memiliki kelebihan yaitu bentuk fungsi kepadatan peluang berbentuk monoton turun maupun berbentuk unimodal. Selain itu, distribusi Pareto Positive Stable dapat memodelkan data severitas klaim dengan karakteristik data heavy tailed. Berdasarkan penaksiran paramater dengan menggunakan penaksiran maximum likelihood pada data klaim asuransi kendaraan bermotor, kemudian dilakukan perbandingan menggunakan distribusi Lognormal dengan menggunakan AIC dan BIC, didapat bahwa distribusi Pareto Positive Stable lebih baik dalam memodelkan severitas klaim asuransi kendaraan bermotor.
In this study, it introduced a distribution called the Pareto Positive Stable distribution. The distribution is a distribution that is built using the Laplace transform of the shape parameter in the Pareto distribution. In addition, the Pareto Positive Stable distribution is also obtained from the transformation of the Weibull distribution. The transformations used are exponential transformation and multiplication by constant transformation. The Pareto Positive Stable distribution has the advantage of having the form of a probability density function in the form of a decreasing monotone or a unimodal form. In addition, the Pareto Positive Stable distribution can model claim severity data with heavy tail data characteristics. Based on the parameter estimation using maximum likelihood estimation for motor vehicle insurance claims data, then doing comparison using the distribution with the Lognormal distribution using AIC and BIC, it is found that the Pareto Positive Stable distribution is better in modeling the severity of motor vehicle insurance claims."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nazhira Ghaisani
"Distribusi Exponentiated Generalized Burr Type X merupakan distribusi hasil pengembangan dari distribusi Burr Type X berdasarkan kelas distribusi Exponentiated Generalized. Sifat-sifat statistik dan karakteristik distribusi Exponentiated Generalized Burr Type X meliputi fungsi kepadatan peluang, fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen, momen pusat, fungsi kuantil, \textit{mean}, variansi, koefisien variasi, \textit{skewness}, dan kurtosis dibahas pada skripsi ini. Penaksiran parameter dari distribusi Exponentiated Generalized Burr Type X menggunakan metode Maximum Likelihood Estimator, dilanjutkan dengan metode numerik Gradien Konjugat Fletcher Reeves dan Broyden-Fletcher-Goldfarb-Shanno. Metode Gradien Konjugat Fletcher Reeves dan Broyden-Fletcher-Goldfarb-Shanno dibandingkan dan dipilih metode terbaik untuk mengestimasi parameter distribusi Exponentiated Generalized Burr Type X, dievaluasi dari nilai \textit{mean squared error} terkecil. Sebagai ilustrasi, digunakan data severitas klaim asuransi pengangguran yang dimodelkan dengan distribusi Exponentiated Generalized Burr Type X. Uji Kolmogorov Smirnov digunakan untuk menguji kecocokan model distribusi Exponentiated Generalized Burr Type X dengan data severitas klaim, kriteria AIC dan BIC digunakan untuk memilih distribusi paling cocok dalam memodelkan data severitas klaim.
The Exponentiated Generalized Burr Type X distribution is a distribution resulting from the development of the Burr Type X distribution based on the Exponentiated Generalized distribution class. Statistical properties and characteristics of the Exponentiated Generalized Burr Type X distribution include probability density function, cumulative distribution function, survival function, hazard function, moment, central moment, quantile function, mean, variance, coefficient of variation, skewness, and kurtosis are discussed in this final project. Estimating the parameters of the Exponentiated Generalized Burr Type X using Maximum Likelihood Estimator method, continued with Conjugate Gradient Fletcher Reeves and Broyden-Fletcher-Goldfarb-Shanno numerical methods. The Fletcher Reeves and Broyden-Fletcher-Goldfarb-Shanno Conjugate Gradient methods were compared and the best method was chosen to estimate the Exponentiated Generalized Burr Type X distribution parameters, evaluated from the smallest mean squared error value. As an illustration, severity claim data of unemployment insurance claims is used which is modeled with the Exponentiated Generalized Burr Type X distribution. The Kolmogorov Smirnov test were used for to test the suitability of the Exponentiated Generalized Burr Type X distribution model with claims severity data, the AIC and BIC criteria were used to select the most suitable distribution in modeling claims severity data."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library