Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Nisrina Ayu Labibah
"Graf G=(V,E) merupakan pasangan terurut dari himpunan V dan E, di mana V adalah himpunan simpul di G dan E adalah himpunan busur di G. Lintasan u-v antara dua simpul u dan v di G adalah barisan simpul dan busur yang berawal di u dan berakhir di v tanpa adanya pengulangan simpul. Jarak antara simpul u dan v adalah panjang terkecil dari semua lintasan u-v di G. Geodesik u-v adalah lintasan u-v dengan panjang sama dengan jarak u dan v. Misalkan diberikan pewarnaan pada busur-busur graf. Lintasan pelangi adalah lintasan di mana warna semua busurnya berbeda. Geodesik pelangi adalah geodesik tanpa pengulangan warna busur. Pewarnaan pelangi kuat lokal-d merupakan pewarnaan semua busur di G di mana setiap pasangan simpul dengan jarak sampai d terhubung oleh geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal-d pada graf G, dinotasikan dengan lsrc_d (G), adalah bilangan terkecil banyak warna yang digunakan dalam pewarnaan pelangi kuat lokal-d. Graf bintang dengan m+1 simpul adalah graf dengan satu simpul berderajat m dan m simpul berderajat 1. Graf lintasan adalah graf dengan n simpul yang membentuk himpunan busur {u_i u_(i+1)|i=1,2,...,n-1}. Graf stacked book merupakan hasil kali Kartesius antara graf bintang dan graf lintasan. Pada penelitian ini, dicari bilangan keterhubungan pelangi kuat lokal pada graf stacked book untuk d=2 dan d=3.

A graph G=(V,E) is an ordered pair of sets V and E, where V is the set of vertices in G and E is the set of edges in G. The u-v path between two vertices u and v in G is a sequence of vertices and edges that starts at u and ends at v without any vertex repetition. The distance between vertices u and v is the minimum length of all u-v paths in G. The u-v geodesic is a u-v path with the length equal to the distance. Suppose all edges of graph is colored. A rainbow path is a path in which the colors of all its edges are different. A rainbow geodesic is a geodesic with no repeating edge colors. A d-local strong rainbow coloring is the coloring of all edges in G where every pair of vertices with a distance of up to d is connected by a rainbow geodesic. The d-local strong rainbow connection number of graph G, denoted by lsrc_d (G), is the smallest number of colors used in the d-local strong rainbow coloring. A star graph with m+1 vertices is a graph with a vertex of degree m and m vertices of degree 1. A path graph is a graph with n vertices and set of edges {u_i u_(i+1)|i=1,2,...,n-1}. A stacked book graph is the Cartesian product between the star graph and the path graph. In this research, we give the local strong rainbow connection number of stacked book graphs for d=2 and d=3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rayhan
"Misalkan graf dengan merupakan himpunan tak kosong simpul dan merupakan himpunan busur. Didefinisikan pewarnaan busur dari graf dimana busur yang bertetangga dapat memiliki warna yang sama. Untuk sembarang pasangan simpul berbeda, lintasan pelangi adalah lintasan yang semua warna busur pada lintasan tersebut berbeda. Lintasan terpendek dari sembarang dua simpul di yang di dalamnya tidak terdapat pengulangan warna disebut sebagai geodesik pelangi. Panjang lintasan terpendek merupakan jarak antara sembarang dua simpul. Pewarnaan pelangi dengan suatu geodesik pelangi untuk setiap pasang simpul berjarak maksimum disebut pewarnaan pelangi kuat lokal-. Banyak -warna minimum yang dibutuhkan untuk membentuk pewarnaan pelangi kuat lokal-pada graf disebut bilangan keterhubungan pelangi kuat lokal- pada graf . Graf hasil operasi korona didefinisikan sebagai graf yang terbentuk dari satu graf dan salinan graf , dimana untuk tiap simpul ke- di dihubungkan dengan tiap simpul dari salinan ke- graf . Penelitian ini bertujuan untuk mencari bilangan keterhubungan pelangi kuat lokal graf bipartit lengkap serta graf hasil operasi koronanya dengan komplemen graf lengkap. Graf bipartit lengkap adalah graf yang himpunan simpulnya dapat dipartisi menjadi dua sub-himpunan , sehingga setiap busur di menghubungkan simpul di dan simpul di dan setiap simpul di bertetangga dengan setiap simpul di dan graf lengkap adalah graf yang setiap pasang simpulnya bertetangga.

Let be graph where is a non-empty set of vertices and is set of edge. Define an edge coloring , of , where adjacent edges may be have the same color. For any distinct vertices , a rainbow path is a path whose edge color on that path are all distinct. The shortest path from any two vertices in where there are no repeating colors is called a rainbow geodesic. The smallest length of path is a distance between for any vertices and denoted by . A rainbow coloring such that any two vertices with a distance at most with a rainbow geodesic is called -local strong rainbow coloring. Minimum number of -colors required for a -local strong rainbow coloring in is called local strong rainbow connection number-, it can be written as . The corona product is define as a graph that form by taking one grah and copies of graph , where for every -th vertex of is connected to each vertex of the -th copy of . This study aims to find local strong rainbow connection number of complete bipartite graph and it’s corona product with a complement complete graph. Complete bipartite graph is a gaph that the set of vertices can be partitioned into two subset and , such that for every edge in connects the vertices in and vertices in and for every vertices in adjacent with every vertices in and complete graph is a graph that every vertices in that graph is adjacent."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siwi Purwitasari
"Misalkan G = (V(G), E(G)) suatu graf sederhana. Didefinisikan suatu pewarnaan busur c: E(G) => {1,2, ..., k}, dengan k E N. Suatu lintasan antara simpul u dan v di G dengan pewarnaan c disebut lintasan-(u-v) pelangi, jika tidak ada dua busur di lintasan-(u-v) yang memiliki warna yang sama. Untuk dua simpul u dan v di G, geodesik pelangi-(u-v) adalah lintasan pelangi dengan panjang d(u,v), dimana d(u,v) disebut panjang lintasan-(u-v) terpendek di G. Pewarnaan pelangi kuat lokal-d didefinisikan sebagai pewarnaan busur yang setiap dua simpul dengan jarak maksimum d dapat dihubungkan oleh geodesik pelangi dan bilangan yang menyatakan banyak warna minimum dalam suatu pewarnaan pelangi kuat lokal-d dimana nilai d berada pada interval 1 3 dan r >1 dan graf CnPs adalah graf yang diperoleh dengan mengambil satu salinan dari Cn dan sebanyak n salinan dari Ps, dan menghubungkan setiap simpul dari salinan ke-i dari Ps dengan simpul ke-i dari Cn dengan n > 3 dan s > 2. Tesis ini memaparkan hasil tentang bilangan keterhubungan pelangi kuat lokal-d dari graf CnKr dan graf CnPs dengan n > 3, r >1, s >2 untuk d = 2 dan d = 3.

Let G = (V(G), E(G)) be a simple graph. Define an edge coloring c: E(G)=> {1,2, ..., k}, with k E N. A path between vertices u and v in G is called rainbow (u-v)-path if we can have an edge coloring such that every edge in the path has different color. For two vertices u and v of G, a rainbow (u-v)-geodesic is a rainbow path of length d(u,v), which d(u,v) is called the shortest (u-v)-path length in G. The d-local strong rainbow coloring is defined as edge coloring that any two vertices with a maximum distance d can be connected by a rainbow geodesic and the smallest number of colors in d-local strong rainbow coloring such that any two vertices with distance at most d, 1 3 and r > 1 and the graph CnPs is defined as the graph obtained from Cn and Ps by taking one copy of Cn and n copies of Ps and connecting each vertex from the ith-copy of Ps with the ith-vertex of Cn for n > 3 and s >2. This thesis presents some results regarding the d-local strong rainbow connection number of the graph CnKr and graph CnPs with n > 3, r > 1 and s > 2 for d = 2 and d =3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Khairunnisa Nur Afifah
"Suatu graf G terdiri dari himpunan simpul V(G) dan himpunan busur E(G). Pemberian warna pada busur suatu graf G disebut pewarnaan busur. Lintasan pelangi adalah lintasan di mana semua busur pada lintasan tidak memiliki pengulangan warna. Geodesik pelangi merupakan lintasan pelangi terpendek antara dua simpul di G. Pewarnaan pelangi kuat lokal-d, di mana d merupakan jarak antara dua simpul dan berupa bilangan bulat positif, merupakan pewarnaan di mana setiap pasangan simpul di G, dengan jarak maksimal d, terhubung oleh geodesik pelangi. Bilangan terkecil yang digunakan dalam pewarnaan tersebut disebut bilangan keterhubungan pelangi kuat lokal-d, dinotasikan dengan lsrc_d(G). Graf hasil operasi korona antara graf G dan graf H, dinotasikan dengan G\odot H, merupakan graf yang dihasilkan dengan mengambil satu salinan graf G dan m salinan graf H, di mana m adalah orde dari G, kemudian setiap simpul ke-i di G dihubungkan ke setiap simpul pada salinan ke-i dari H. Pada skripsi ini, akan ditentukan bilangan keterhubungan pelangi kuat lokal-d pada graf hasil operasi korona antara graf lingkaran untuk nilai d=2 dan d=3. A graph G consists of vertices set V(G) and edges set E(G).

An assignment of colors to the edges of G is called an edge coloring. A rainbow path is a path where all edges in the path has no color repetition. A rainbow geodesic is a shortest rainbow path between two vertices in G. The d-local strong rainbow coloring, where d is shortened for distance between two vertices and is a positive integer, is a coloring in which every two distinct vertices in G, with distance up to d, can be connected by a rainbow geodesic. The least number of colors used in such coloring is called d-local strong rainbow connection number, denoted by lsrc_d(G). The corona product of G and H, denoted by G\odot H, is a graph obtained by taking a copy of Gand m copies of H, where m is the order of G, then every i-th vertex of G is connected to every vertex in the i-th copy of H. In this thesis, we will determine the d-local strong rainbow connection number of corona product between cycle graphs for d=2 and d=3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qonita Wafa Salsabila
"Misalkan graf G terdiri dari himpunan tak kosong V yang dinamakan sebagai himpunan simpul dan himpunan E yang disebut sebagai busur. Jarak adalah panjang lintasan terpendek antara dua pasang simpul, dan diameter merupakan maksimum jarak antar pasang simpul dalam graf tersebut. Geodesik pelangi pada pewarnaan busur di graf G merupakan lintasan terpendek antara dua pasang simpul yang tidak mengandung pengulangan warna. Pewarnaan pelangi kuat lokal-d pada graf G merupakan pewarnaan dimana terdapat geodesik pelangi untuk setiap antar pasangan simpul dengan jarak maksimum d. Jumlah warna minimum yang dibutuhkan agar graf G memiliki pewarnaan pelangi kuat lokal-d adalah bilangan keterhubungan pelangi kuat lokal-d (d-local strong rainbow connection number) yang dinotasikan sebagai lsrc_d. Misalkan graf G dan H merupakan graf berderajat m, n berturut-turut. Graf hasil operasi korona dari graf G dan H, G ⊙ H merupakan graf yang diperoleh dengan mengambil satu salinan dari graf G dan m salinan dari graf H, lalu tiap simpul dari salinan ke-i graf H dihubungkan dengan simpul ke-i dari graf G. Pada penelitian ini, akan diberikan konstruksi pewarnaan pelangi kuat lokal pada graf hasil operasi korona antara graf berdiameter maksimum dua beserta bilangan keterhubungan pelangi kuat lokalnya.

Let graph G=(V,E) consists of a non-empty set of vertices V and set E that is said to be edge. Distance in graph G is the number of edges of a shortest path between two vertices and the shortest path between two vertices is called geodesic. A rainbow geodesic in an edge-colored graph G is a shortest path between a pair of vertices in which doesn’t contain color repetition. A local strong rainbow coloring of G is a coloring where there is a rainbow geodesic between each pair of vertices with a maximum d-distance. The minimum number of colors required for a graph to have local strong rainbow coloring is called local strong rainbow connection number-d, written as lsrc_d. Suppose that graphs G and H are graphs of degree m and n, respectively. The corona product of G and H, G ⊙ H is a graph obtained by taking a copy of graph G and m copies of graph H, then each vertex of the i-th copy of H is connected to the i-th vertex of G. In this research, we construct the d-local strong rainbow coloring of corona product of graph with maximum diameter of 2 and its local strong rainbow connection numbers."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library