Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18 dokumen yang sesuai dengan query
cover
cover
Febrisa Dhewi Ramadhany
"ABSTRACT
Thalassemia merupakan salah satu penyakit kelainan sel darah merah yang diturunkan oleh orang tua sejak lahir. Thalassemia mengakibatkan protein yang ada di dalam sel darah merah rusak dan tidak mampu berfungsi dengan baik. Hingga saat ini penyakit thalassemia belum dapat disembuhkan, namun penyakit thalassemia dapat dicegah dengan melakukan deteksi dini atau tes prenatal yang dikenal dengan skrining. Pada penelitian ini deteksi dini dilakukan dengan bantuan komputer. Ada beberapa teknik yang telah digunakan untuk mengklasifikasi skrining data thalassemia, salah satu metode yang mampu mengklasifikasi penyakit thalassemia diantaranya adalah Support Vector Machines (SVM) dan Multi-Layer Perceptron (MLP). Data thalassemia yang digunakan diperoleh dari RSAB Harapan Kita, Indonesia. Data tersebut memiliki yang memiiki 10 fitur. Setelah pengujian dilakukan, klasifikasi dengan menggunakan metode SVM menunjukkan hasil akurasi lebih baik sebesar 97,47190988%  dengan rata-rata running time 0,145899875 detik. Sedangkan MLP memperoleh hasil akurasi terbaik sebesar 63,91% dengan rata-rata running time 0,009033 detik. Kesimpulan yang diperoleh menunjukkan bahwa teknik klasifikasi menggunakan SVM memiliki akurasi yang  lebih baik apabila dibandingkan dengan MLP. 

ABSTRACT
Thalassaemia is a red blood cell disorder that is inherited by parents from birth. Thalassaemia results in damaged proteins in red blood cells and are unable to function properly. Until now, thalassaemia has not been cured, but thalassaemia can be prevented by early detection or prenatal testing known as screening. In this study, early detection is done with the help of a computer. There are several techniques that have been used to classify thalassaemia data screening, one method that is able to classify thalassaemia include Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The thalassaemia data used was obtained from Harapan Kita Hospital, Indonesia. The data has 10 features. After the testing is done, the classification using the SVM method shows better accuracy results of 97.447190988% with an average running time of 0.145899875 seconds. While MLP obtained the best accuracy results of 63.91% with an average running time of 0.009033 seconds. The conclusions obtained showed that the classification technique using SVM had better accuracy compared to MLP."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Mohamad Anshar Lotan
"ABSTRAK
Tujuan dari permasalahan filtrasi spam adalah mengidentifikasi sebuah e-mail sebagai spam atau bukan spam. Dengan berkembangnya machine learning, semakin banyak permasalahan yang dapat diselesaikan. Salah satunya adalah filtrasi spam. Filtrasi e-mail spam dapat dilakukan dengan bantuan klasifikasi biner dengan machine learning untuk pengklasifikasiannya. Dalam penelitian ini akan menggunakan regresi logistik dan perceptron untuk melakukan proses filtrasi spam. Data yang digunakan menggunakan dataset Enron Spam. Hasil dari analisis menunjukkan bahwa regresi logistik menunjukkan hasil yang lebih baik dari perceptron. Di mana akurasi regresi logistik mencapai 97,02, sedangkan tingkat akurasi perceptron adalah 95,54, tetapi waktu pelatihan perceptron hanya membutuhkan waktu 3,8 sekon, sedangkan regresi logistik membutuhkan waktu 780,94 sekon.

ABSTRACT
The goal of spam filtering is to identify an e mail as spam or not spam. With the rapid development of machine learning, more problem can be solved. One of it is spam filtration. E mail spam filtering can be done with the help of binary classifier using machine learning for the classification. This research would use logistic regression and perceptron technique to filter spam. Data taken from Enron Spam dataset. The result indicate that logistic regression show better result than perceptron. Whereas the accuracy from logistic regression could reach 97,02, while accuracy from perceptron is 95,54, meanwhile the training time for perceptron takes only 3,8 second, while logistic regression takes about 780,94 second. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josephine
"Salah satu metode yang digunakan untuk mendeteksi kadar kolesterol seseorang adalah dengan mengambil sejumlah darah untuk diuji. Namun, hal tersebut dapat membuat sejumlah orang merasa kurang nyaman. Oleh karena itu, metode pegukuran bersifat tidak merusak dibuat dan mengalami perkembangan yang pesat. Salah satu metode bersifat tidak merusak yang ditemukan adalah dengan menggunakan Iridologi. Fokus pada penelitian ini adalah perancangan sistem untuk memprediksi kelas kolesterol seseorang melalui citra iris. Kondisi kesehatan setiap organ dan jaringan pada tubuh dapat dilihat melalui iris. Hal tersebut dapat dimanfaatkan untuk memprediksi kelas kolesterol seseorang. Sistem yang dibuat terdiri dari instrument yang berfungsi untuk meng-akuisisi citra iris dan algoritma pengolahan citra yang berbasis ciri tekstur. Pemrosesan yang dilakukan pada citra iris adalah peningkatan kualitas dengan metode penyaringan Fast Fourier Transfor, dan mengubah citra menjadi keabuan, lokalisasi, normalisasi dan segmentasi 30% terluar dari citra iris. Metode ekstraksi ciri yang digunakan pada penelitian ini adalah Gray Level Co-occurance Matrix dengan jarak tetangga sebesar 45%, 65% dan 90%. Model klasifikasi terbaik dengan menggunakan MLP dapat mengklasifikasi kelas kolesterol tinggi dan kolesterol normal dengan K-fold cross validation dengan akurasi sebesar 86,67%, misclassification rate (MR) sebesar 13,33%, false positive rate (FPR) sebesar 9,09%, dan false negative rate (FNR) sebesar 25%.

One of the methods to detect the rate of cholesterol levels, is to extract a certain amount of blood from a subject’s body, which will then be tested. However, these practices has been deemed by a substantial amount of individuals or groups to be an uncomfortable procedure. These unpleasant reactions are the reason for the manufacturing and improvement of another measuring method, which is considerably less invasive. It is called Iridology, where the study or predictions of one’s cholesterol levels are based on one’s iris image. The method is developed further on an acquisition instrument and image processing algorithm, which are both based on an image texture factor. The pre-processing that are applied to the image are quality enhancement with an FFT filtering method and the transformation into a grayscale image, which are then localized, normalized, and segmented by 30% outlying the iris image. The extraction method applied in this study is the Gray Level Co-occurance Matrix with a neighbouring distance of 45%, 65%, and 90%. The Multilayer Perceptron Model is used to categorize different classes of both normal and high cholesterol levels with K-fold cross validation to produce an accuracy rate of 86,67%, misclassification rate (MR) of 13,33%, false positive rate (FPR) of 9,09%, and false negative rate (FNR) of 25%. These established rates proves that the alternative method is able to classifying an individual’s cholesterol levels in a less invasive manner."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Arry Hermansyah
"Upaya untuk meningkatkan kepuasan dan loyalitas donatur serta untuk memandu perumusan perencanaan pengembangan organisasi, maka dibutuhkan strategi pengembangan donatur, adapun untuk melakukan strategi pengembangan donatur dapat dilakukan dengan pendekatan data mining yang meliputi pengelompokan donatur dengan metode clustering dan hasil pengelompokan tersebut dievaluasi dengan artificial neural network (multilayer perceptron), dan menggunakan metode association rules untuk menganalisa peta pemasaran serta dirumuskan strategi pengembangan donatur berdasarkan data transaksi dan visi misi. Hasil penelitian menyarankan bahwa manajemen hubungan lembaga amil zakat dengan donatur perlu dikembangkan sehingga terjalin komunikasi yang aktif antar keduanya.

Efforts to increase donor satisfaction and loyalty as well as to guide the formulation of organizational development planning, donor development strategy is required, as for donors to make development strategy can be done with data mining approach that involves the grouping of donors by the method of clustering and classification results were evaluated by artificial neural network (multilayer perceptron), and using methods of association rules to analyze a map of marketing and donor development strategies are formulated based on transaction data and the vision and mission. The results suggest that the management of relations with donor amil zakat institution should be developed so that active communication is established between them."
Depok: Universitas Indonesia, 2011
T28731
UI - Tesis Open  Universitas Indonesia Library
cover
Marinus Martin Dwiantoro
"Denial of Service adalah salah satu serangan siber yang dapat mengakibatkan gangguan layanan dan kerugian finansial. Akibat dari serangan DoS tentunya akan memberikan dampak buruk dan sangat merugikan. Untuk dapat menanggulangi dan meminimalisir dampak serangan DoS, dirancanglah sebuah sistem deteksi serangan DoS dan klasifikasi serangan yang terjadi menggunakan machine learning. Pada penelitian ini, akan dilakukan perancangan sistem deteksi serangan DOS melalui pengumpulan traffic data yang dikumpulkan oleh Wireshark dan dikonversi menggunakan CICFlowMeter. Serangan DoS dilancarkan oleh GoldenEye, HULK, dan SlowHTTPTest. Pengklasifikasian diterapkan pada salah satu dataset pada CICIDS2017, menggunakan algoritma Random Forest, AdaBoost, dan Multi-layer Perceptron. Hasil akurasi klasifikasi tertinggi adalah Random Forest sebesar 99,68%, hasil rata-rata Cross-Validation tertinggi juga dipegang oleh Random Forest sebesar 99,67%, dan untuk perbandingan performa antara hasil algoritma yang dilakukan oleh penulis dan paper konferensi DDOS Attack Identification using Machine Learning Techniques yang menjadi acuan, hasil yang paling mendekati adalah Random Forest dengan besar yang sama.

Denial of Service is a cyberattack that can result in service disruption and financial loss. The consequences of a DoS attack will certainly have a bad and very detrimental impact. To be able to overcome and minimize the impact of DoS attacks, a DoS attack detection system and classification of attacks that occur using machine learning was designed. In this research, a DOS attack detection system will be designed by collecting traffic data collected by Wireshark and converted using CICFlowMeter. DoS attacks were launched by GoldenEye, HULK, and SlowHTTPTest. Classification was applied to one of the datasets in CICIDS2017, using the Random Forest, AdaBoost, and Multi-layer Perceptron algorithms. The highest classification accuracy result is Random Forest at 99.68%, the highest average Cross-Validation result is also held by Random Forest at 99.67%, and for performance comparison between the algorithm results carried out by the author and the conference paper DDOS Attack Identification using Machine Learning Techniques are the reference, the closest result is Random Forest with the same size."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iffa Maula Nur Prasasti
"Asuransi mobil adalah produk asuransi yang banyak digunakan di Indonesia. Namun, asuransi mobil memiliki potensi untuk kecurangan klaim yang menyebabkan kerugian bagi perusahaan dan pemegang polis. Penelitian ini bertujuan untuk merancang model prediksi deteksi kecurangan asuransi mobil di Indonesia menggunakan pendekatan machine learningSupervised classifiers adalah salah satu teknik machine learning yang memiliki kemampuan untuk memprediksi kasus-kasus anomali. Supervised classifiers yang digunakan pada penelitian ini adalah Multilayer Perceptron (MLP), Decision Tree C4.5, dan Random Forest (RF). Penelitian ini menggunakan data real-world pada perusahaan asuransi mobil di Indonesia. Dataset memiliki distribusi tidak seimbang yang sangat tinggi antara data pemegang polis yang melakukan kecurangan dan pemegang polis yang sah. Penelitian ini menangani masalah dataset yang tidak seimbang dengan menggunakan Synthetic Minority Oversampling Technique (SMOTE) dan metode undersampling. Kinerja model dievaluasi melalui confusion matrix, Kurva ROC, dan parameter seperti sensitivitas. Penelitian ini menemukan bahwa Random Forest memberikan hasil terbaik dibandingkan dengan MLP dan Decision Tree C4.5.

Automobile insurance is widely used insurance product in Indonesia. However, automobile insurance has the potential for  fraudulent claim that leads to several consequences for the company and policyholder. This research aims to design a prediction model of automobile insurance fraud detection in Indonesia using a machine learning approach. Supervised classifiers is one of machine learning techniques that has the ability to predict anomaly cases. The proposed supervised classifiers are Multilayer Perceptron (MLP), Decision Tree C4.5, and Random Forest(RF). This research used real-world data on an automobile insurance company in Indonesia. The dataset has a high imbalanced distribution between the data of policyholders who commit fraud and legitimate. This study handles the imbalanced dataset problem by using the Synthetic Minority Oversampling Technique (SMOTE) and undersampling methods. The performance of models is evaluated through the confusion matrix, ROC Curve, and parameters such as sensitivity. This research found that Random Forest outperformed the results comparing to other classifiers."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samuel Tjahjono
"Asuransi menjadi konsep yang tidak asing lagi dalam memitigasi risiko yang dapat menimbulkan kerugian finansial yang besar bagi pihak tertanggung. Dalam dunia kerja secara khusus, terlihat adanya peningkatan jumlah kecelakaan kerja di Indonesia dari tahun ke tahun. Kecenderungan tersebut memperlihatkan adanya prospek pengembangan asuransi kompensasi pekerja yang menjanjikan. Tentunya, penentuan tarif premi yang cukup sebagai komponen utama dalam kerangka bisnis asuransi memerlukan prediksi severitas klaim yang akurat. Menurut karakteristik data klaim asuransi pekerja, teramati bahwa dataset tersebut berbentuk tabular dan variabel severitas klaim bersifat kontinu. Oleh sebab itu, prediksi severitas klaim dapat dipandang sebagai masalah regresi data tabular. Penelitian ini akan meninjau performa dari TabTransformer, salah satu metode berbasis tranformer dalam melaksanakan regresi yang mengimplementasikan contextual embeddings terhadap fitur-fitur kategorik. Performa sebagai akibat dari penangkapan konteks oleh model TabTransformer akan diukur dan kemudian dibandingkan dengan metode-metode lain yang mendukung penyelesaian permasalahan regresi, seperti Decision Trees Regressor, Random Forest, XGBoost, dan Multi-Layer Perceptron sebagai model dasar TabTransformer.

It is without the need of doubt to believe upon the integrity within the concepts of insurance as a way of mitigating significant financial risks of its own policyholders. As something which existence is prevalent, risks are also found within the workplace environment as seen in the rising numbers of yearly work-related accidents. This tendency suggests promising prospects upon the development and incorporation of worker’s compensation insurance into the business lines of especially reliable insurance companies. As a core part of insurance policies, determining the sufficient rate of premium would require accurate prediction of claim severity. Upon observing the characteristics of claim severity datasets, witnessed are the following two points: that (1) both datasets take a tabular form, and (2) the number of severities is a continuous target variable. Evidently, it shows that the problem to be solved is regression for tabular data. This particular research will focus upon the performance of TabTransformer as a transformer-based machine learning model that incorporates Transformers in providing a degree of interpretability from its capabilities by performing contextual embeddings of the categorical features of our data. The performance will be measured and will further be compared to other models suitable for regression, such as Decision Trees Regressor, Random Forest, XGBoost, and baseline model Multi-Layer Perceptron"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan
"Emosi atau perasaan manusia adalah salah satu faktor yang tidak dapat dikendalikan dalam aktivitas apapun. Tidak sedikit juga pekerjaan yang seringkali berkaitan dengan emosi manusia terutama di industri hiburan dan juga kesehatan. Oleh karena itu, 1 dekade kebelakang banyak riset yang dilakukan untuk mempelajari emosi manusia secara langsung maupun menggunakan teknologi. Pengembangan model speech emotion recognition berbahasa Indonesia masih sangat sedikit dan oleh karena itu dibutuhkan perbandingan secara spesifik pada penelitian ini diantara dua model classifier yaitu Convolutional Neural Network (CNN) dan juga Multilayer Perceptron (MLP) untuk menentukan model yang menghasilkan akurasi terbaik dalam memprediksi emosi dari suara manusia.
Dalam speech recognition secara umum, salah satu faktor penting dalam mendapatkan model dengan akurasi terbaik adalah metode ekstraksi fiturnya. Oleh karena itu, penelitian ini menggunakan 3 fitur untuk melakukan pelatihan terhadap model yaitu Mel-frequency Cepstral Coefficients (MFCC), Mel-Spectrogram dan chroma. Dari 3 fitur ini, divariasikan dan menghasilkan 7 metode ekstraksi yang berbeda untuk digunakan sebagai input pelatihan model.
Terakhir, untuk memastikan bahwa model sudah menggunakan parameter terbaik, dilakukan eksperimen dengan membandingkan model yang menggunakan batch size serta activation function yang berbeda. Ditemukan bahwa dengan menggunakan CNN dan fitur gabungan antara MFCC, mel-spectrogram dan juga chroma menghasilkan model dengan skor akurasi 50.6% sedangkan menggunakan MLP dengan fitur yang sama menghasilkan model dengan skor akurasi 58.47%.

Emotions or human feelings are one of the factors that cannot be controlled in any activity. There are also many jobs that are often related to human emotions, especially in the entertainment and health industries. The development of speech emotion recognition models in Indonesian is still very little and therefore a specific comparison is needed in this study between two classifier models, namely Convolutional Neural Network (CNN) and Multilayer Perceptron (MLP) to determine the model that produces the best accuracy in predicting the emotion of the human voice.
In speech recognition in general, one of the important factors in acquiring a model with the best accuracy is the feature extraction method. Therefore, this study uses 3 features to train the model, namely Mel-frequency Cepstral Coefficients (MFCC), Mel-Spectrogram and chroma. From these 3 features, they were varied and resulted in 7 different extraction methods to be used as model training inputs.
Finally, to ensure that the model has used the best parameters, an experiment was conducted by comparing models using different batch sizes and activation functions. It was found that using CNN and the combined features of MFCC, mel-spectrogram and also chroma resulted in a model with an accuracy score of 50.6% while using MLP with the same features resulted in a model with an accuracy score of 58.47%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>