Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Lo, Chor Pang, 1939-
Jakarta: UI-Press, 1995
621.367 8 LO p
Buku Teks  Universitas Indonesia Library
cover
Indroyono Soesilo
"buku ini berisi kumpulan artikel mengenai inovasi teknologi di Indonesia. "
Jakarta: Muskia, 2000
R 621.3678 IND m
Buku Referensi  Universitas Indonesia Library
cover
Arief Prasetyo
"ABSTRAK
Perkembangan perkotaan yang pesat terjadi di negara berkembang terutama pada wilayah pinggiran kota. Dampaknya adalah terjadinya penjalaran yang merupakan fenomena perkotaan yang kompleks dan sulit diukur. Pemangku kebijakan memerlukan metode yang sederhana untuk mengontrol dan mengevaluasi penjalaran sebuah kota.
Penelitian ini bertujuan untuk mengukur dan menilai tingkat penjalaran perkotaan menggunakan model Shannon Entropy dengan mempertimbangkan jarak terhadap pusat kota dan jaringan jalan. Penerapan Shannon?s Entropy di Bodetabek pada 1989-2014 menunjukkan bahwa pola penjalaran linier lebih dominan terjadi di Kabupaten Bogor, Bekasi dan Kota Bogor. Semakin besarnya indeks Shannon?s Entropy mengindikasikan keenderungan penjalaran perkotaan yang semakin acak. Pola penjalaran melompat (acak) terjadi di Kabupaten Tangerang yang ditandai indeks entropy yang tinggi. Penjalaran kota di Bodetabek dipengaruhi oleh karakterik fisik dan sosial wilayah terutama aspek kemiringan tanah dan perubahan jumlah penduduk.

ABSTRACT
Rapid urban development occurred in developing countries, particularly in the urban fringe area. The impact was related to the occurrence of urban sprawl which is highly complex urban phenomenon and difficult to measure. Related stakeholders require a simple method to estimate and evaluate the urban sprawl patterns.
This paper aims to measure and asses the level of urban sprawl based on Shannon?s Entropy considering on two aspect i.e. the distance to town center and road networks. Application of Shannon's Entropy in Bodetabek for 1989-2014 described that linear pattern of sprawling mostly happened in Bogor, Bekasi and Bogor city. With increasing of entropy index, this pattern tends to become more scattered in the future, even in Bogor regency the pattern becomes leapfrog characteristics for 2014. Tangerang Regency showed leapfrog pattern with high entropy index. Urban sprawl in Bodetabek driven by region?s physical and social characteristics mainly with slope and population growth.
"
2016
T44776
UI - Tesis Membership  Universitas Indonesia Library
cover
Mia Rizkinia
"Kegiatan penangkapan ikan di laut memerlukan aplikasi teknologi yang memberikan informasi pendukung yang menyeluruh, mencakup wilayah yang luas dan dalam waktu yang cepat untuk efisiensi dan efektivitas penangkapan ikan. Hasil scan satelit NOAA/AVHRR-APT dapat dimanfaatkan untuk keperluan ini dengan melakukan pengolahan datanya terlebih dahulu. Penelitian ini menggunakan data mentah dari transmisi analog tipe Automatic Picture Transmission (APT) satelit NOAA/AVHRR yang di-decode menjadi digital dengan software WxtoImg. Pengolahan citra dilakukan menggunakan software perangkat lunak komputasi matematis dengan masukan berupa data level 2.
Pengolahan data level 0 menjadi data level 2 ini dilakukan pada WxtoImg. Untuk membuat peta isotherm permukaan laut dan menetukan letak geografis daerah potensi ikan dibutuhkan persamaan yang menghubungkan antara suhu dengan piksel citra. Karena itu, dengan WxtoImg data di- enhancement menjadi citra yang dapat diolah dengan perangkat lunak komputasi matematis dengan persamaan yang menghubungkan antara suhu dan piksel citra. Enhancement bisa dilakukan secara otomatis dengan fasilitas enhancement sea surface temperature (SST) pada WxtoImg dengan acuan hubungan piksel dan suhu dari enhancement curve WxtoImg. Hasil enhancement berupa suhu permukaan laut akan dianalisis keunggulan dan kelemahannya jika dibandingkan dengan menggunakan citra hasil pada utilitas contrast enhance channel B only, yang dalam hal ini menggunakan kanal 4 saja. Dari penggunaan dua jenis data yang berbeda ini, juga bisa diperoleh letak geografis daerah perbedaan suhu permukaan laut dengan algoritma yang dikembangkan.

In order to increase the productivity of fish cultivation, a comprehensive information on fishery area is very vital. Using NOAA/AVHRR-APT, remote sensing satellite data could be converted into the Sea Surface Temperature (SST) could be one of the most effective solution to help the fishermen. In this research, the Automatic Picture Transmission (APT) data broadcasted from the satellite was decoded to level-2 digital imagery using WxtoImg software. To convert this image into the SST profile, image processing technique was implemented.
The result is the SST isotherm map and the geographical location of fishery potential area which is derived from the differences of temperature area. A mathematical correlation function between the pixel values and the SST was derived from the enhancement curve used in the software. The SST as the enhancement output will be analyzed and compared to the result of contrast enhancement of channel 4 only. Using these two variations of data, geographical location of different SST area could be obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40476
UI - Skripsi Open  Universitas Indonesia Library
cover
Rifqi Annas
"Salah satu teknologi yang dapat digunakan untuk mengatasi masalah negara kepulauan, di antaranya pelanggaran batas wilayah, penentuan lokasi sumber daya alam, serta kemampuan dini dalam mendeteksi awalnya suatu bencana alam, adalah teknologi pengindraan jauh. Teknologi ini menggunakan kemampuan sensor satelit yang dapat menangkap citra pemetaan suatu wilayah dengan spesifikasi yang dimilikinya. Salah satu sensor yang memiliki kemampuan tersebut adalah Moderate Resolution Imaging Spectroradiometer (MODIS).
Indonesia yang dilalui garis khatulistiwa, mempunyai karakteristik unik karena di wilayah perairannya terjadi interaksi antara masa air yang datang dari Samudra Hindia dan Samudra Pasifik. Sedangkan habitat dari komunitas ikan sangat dipengaruhi oleh kondisi atau parameter oseonografi perairan seperti suhu permukaan laut, salinitas, konsentrasi klorofil laut, cuaca dan sebagainya, yang berpengaruh pada dinamika atau pergerakan air laut baik secara horizontal maupun vertikal. Di dalam Tugas Akhir ini akan dikembangkan penghitungan Suhu Permukaan Laut menggunakan data MODIS. Data diolah menggunakan rumus yang diturunkan dari Algorithm Theoretical Basis Documents (ATBD) sehingga mendapatkan nilai pasti dari suhu permukaan laut pada beberapa sampel lokasi di perairan Indonesia.

One of many technologies which can be used to overcome archipelago's problems; the violation of a territory, the determination of natural resources location, and the earlier ability to detect earlier natural disaster, is Remote Sensing Technology. This technology uses satellite's ability to capture cartography image of an area with its specification. One of satellites which has that ability is MODIS sensor carried by TERRA/AQUA satellite.
Indonesia, which is passed by the equator line, has an unique characteristic. There is an interaction between water volume from Indian Ocean and Pacific Ocean. Meanwhile, fishing ground in the ocean depends on the condition or oceanography parameters, such as sea surface temperature, salinity, sea chlorophyll concentration, weather, etc. which are influenced by dynamic sea's mobility both horizontally and vertically. One of the sea parameters, the Sea Surface Temperature (SST), could be derived from MODIS data. The data is processed using formula derived from Algorithm Theoretical Basis Documents (ATBD) and implemented to obtain the SST of several sample area in Indonesian watery.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51366
UI - Skripsi Open  Universitas Indonesia Library
cover
Sri Ismaryati
"Penelitian ini bertujuan untuk menentukan kesesuaian lahan (site selection) budidaya ikan kerapu dengan KJA dan memetakannya serta untuk mengidentifikasi dan menentukan lokasi existing KJA di Provinsi Lampung menggunakan penginderaan jauh. Metode pada penelitian ini yaitu komposit citra dan overlay objective analysis menggunakan ArcMap. Zona kesesuaian lahan untuk kegiatan budidaya Kerapu dengan KJA di Provinsi Lampung yaitu berada di perairan dekat pantai atau daratan yaitu di daerah sangat sesuai dan cukup sesuai seluas 10.860,03 km2 atau 42,39% dari luas daerah penelitian. Citra ALOS hanya mampu mendeteksi KJA sebagai spectral pure water sehingga tidak dapat digunakan untuk pemetaan KJA.

The aims of the study are to select the site selection for grouper fish culture in floating net cage (KJA) and mapped it; It also to identify and mapping of existing floating net cages (KJA) aquaculture in Lampung Province using remote sensing. Research methods were image composite and overlay objective analysis with ArcMap. Site selection for grouper aquaculture in Lampung province by KJA is located in waters near shore or land that is of 10.860,03 kmĀ² or 42.39% of the area being studied. ALOS image has detected KJA as spectral pure water which could not be used for floating net cages area mapping.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T42530
UI - Tesis Membership  Universitas Indonesia Library
cover
Nisrina Alifah Sauda
"Beras merupakan bahan pangan pokok dengan tingkat kebutuhan tinggi di kawasan Asia Tenggara, termasuk Indonesia yang menjadi produsen padi terbesar di kawasan ini. Sektor pertanian, khususnya produksi padi, berperan penting dalam mendukung misi Sustainable Development Goals (SDGs) untuk mencapai ketahanan pangan. Namun, tantangan seperti alih fungsi lahan dan perubahan iklim mengancam keberlanjutan produksi padi, termasuk di Kabupaten Indramayu, salah satu lumbung padi utama di Jawa Barat. Untuk mendukung pengelolaan lahan pertanian yang berkelanjutan, pemetaan padi berbasis pengindraan jauh menjadi solusi yang efisien, memanfaatkan teknologi satelit seperti Sentinel-2 dan Landsat-8. Penelitian ini bertujuan untuk memetakan distribusi padi di Kabupaten Indramayu dengan mengintegrasikan metode Convolutional Neural Network (CNN) untuk ekstraksi fitur spektral-temporal dan algoritma Extreme Gradient Boosting (XGBoost) untuk klasifikasi. Hasil penelitian menunjukkan bahwa skema fitur terbaik, yaitu kombinasi data Raw Spectral Bands dengan NDVI, menghasilkan tingkat Overall Accuracy tertinggi sebesar 98,90%. Selain itu, metrik evaluasi lainnya seperti Recall, Precision, dan F1-Score juga menunjukkan hasil tertinggi, masing-masing sebesar 98,90%, yang mencerminkan kemampuan model yang konsisten dalam membedakan area padi dan non-padi. Model CNN-XGBoost menunjukkan kinerja yang lebih baik dibandingkan model CNN murni, dengan akurasi yang lebih tinggi dan hasil evaluasi yang lebih optimal. Dengan memanfaatkan data multispektral dan multitemporal dari kedua satelit, penelitian ini memberikan kontribusi signifikan dalam mendukung pengambilan keputusan berbasis data untuk pengelolaan pertanian yang berkelanjutan, sekaligus memperkuat upaya ketahanan pangan nasional.

Rice is a staple food with high demand in Southeast Asia, including Indonesia, which is the largest rice producer in the region. The agricultural sector, particularly rice production, plays a crucial role in supporting the Sustainable Development Goals (SDGs) for achieving food security. However, challenges such as land conversion and climate change threaten the sustainability of rice production, including in Indramayu Regency, one of the main rice granaries in West Java. To support sustainable agricultural land management, rice mapping based on remote sensing provides an efficient solution, utilizing satellite technologies such as Sentinel-2 and Landsat-8. This study aims to map the distribution of rice in Indramayu Regency by integrating the Convolutional Neural Network (CNN) method for spectral-temporal feature extraction and the Extreme Gradient Boosting (XGBoost) algorithm for classification. The results show that the best feature scheme, a combination of Raw Spectral Bands and NDVI, achieves the highest Overall Accuracy of 98.90%. Additionally, other evaluation metrics such as Recall, Precision, and F1-Score also show the highest values, each at 98.90%, reflecting the model's consistent ability to distinguish between rice and non-rice areas. The CNN-XGBoost model outperforms the pure CNN model, with higher accuracy and better evaluation results. By utilizing multispectral and multitemporal data from both satellites, this study significantly contributes to data-driven decision-making for sustainable agricultural management, while strengthening national food security efforts."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library