Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Basith Abi Ya'la
"Untuk memodelkan data cacah atau count data, model regresi yang biasa digunakan adalah model regresi Poisson. Model regresi Poisson mengasumsikan mean pada variabel respon sama dengan variansinya atau dikenal dengan istilah equidispersion. Apabila regresi Poisson digunakan untuk kondisi selain equidispersion, yaitu overdispersion dan underdispersion, maka nilai standard error dari estimasi parameter model menjadi tidak konsisten. Salah satu alternatif model regresi untuk mengatasi overdispersion maupun underdispersion adalah model regresi double Poisson. Model regresi double Poisson mengasumsikan variabel respon berdistribusi double Poisson. Distribusi double Poisson diperoleh menggunakan definisi dari keluarga distribusi double eksponensial. Parameter pada model regresi double Poisson diestimasi menggunakan metode maksimum likelihood dan solusi dari persamaan log-likelihoodnya diselesaikan menggunakan metode numerik Newton-Raphson. Penerapan model regresi double Poisson pada data kepiting tapal kuda menunjukan bahwa hanya variabel weight yang berpengaruh signifikan terhadap banyak kepiting satelit yang berkerumun ke sarang kepiting tapal kuda betina. Selain itu, interpretasi dari model regresi double Poisson juga serupa dengan model regresi Poisson sebab keduanya menggunakan fungsi penghubung log.

To model count data, the most commonly used regression model is the Poisson regression model. The Poisson regression model assumes that the mean of the response variable is equal to the variance, also known as equidispersion. If Poisson regression is used for conditions other than equidispersion, namely overdispersion and underdispersion, then the standard error value of the estimated model parameters becomes inconsistent. One of the alternative regression models to overcome overdispersion and underdispersion is the double Poisson regression model. The double Poisson regression model assumes that the response variable has a double Poisson distribution. The double Poisson distribution is obtained using the definition of the double exponential distribution family. The parameters in the double Poisson regression model were estimated using the maximum likelihood method and the solutions of the log-likelihood equation were solved using the Newton-Raphson numerical method. The application of the double Poisson regression model to the horseshoe crab data shows that only the variable weight has a significant effect on the number of satellite crabs swarming to the nests of female horseshoe crabs. In addition, the interpretation of the double Poisson regression model is also similar to the Poisson regression model because both use a log link function."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yemima Kathleen Monica
"Diare merupakan salah satu infeksi saluran pencernaan berupa keluarnya tinja encer atau cair tiga kali atau lebih setiap hari. Penyakit ini umum terjadi di Indonesia dan potensial menjadi Kejadian Luar Biasa (KLB) yang sering menyebabkan kematian. Tujuan penelitian ini adalah memodelkan dan mengidentifikasi variabel yang dapat menjelaskan jumlah kejadian penyakit diare di Provinsi Jawa Barat. Jumlah kejadian diare sebagai variabel respons merupakan data berbentuk diskrit yang umumnya dimodelkan menggunakan regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi dalam regresi Poisson membuat regresi Binomial Negatif digunakan apabila terjadi overdispersi. Aspek spasial juga diperhatikan sehingga model yang digunakan dalam penelitian ini adalah Geographically Weighted Negative Binomial Regression (GWNBR). Penaksiran parameter dilakukan menggunakan metode Maximum Likelihood Estimation dengan iterasi Newton-Raphson. Model GWNBR memberikan bobot tertentu pada setiap lokasi pengamatan sehingga menghasilkan taksiran parameter model yang berbeda untuk setiap lokasi pengamatan. Fungsi pembobot kernel yang digunakan adalah Fixed Bisquare dan bandwidth optimum ditentukan menggunakan cross validation (CV). Prediktor yang digunakan dalam penelitian ini adalah persentase rumah tangga yang memiliki akses terhadap sanitasi layak, persentase penduduk miskin, jumlah puskesmas, kepadatan penduduk, jumlah dokter umum, dan indeks pendidikan. Hasil dari analisis menunjukkan bahwa dalam model GWNBR diperoleh 5 kelompok berdasarkan prediktor yang signifikan. Sebanyak 3 prediktor secara signifikan menjelaskan jumlah kejadian diare di seluruh kabupaten/kota di Provinsi Jawa Barat tahun 2022, yaitu persentase penduduk miskin, kepadatan penduduk, dan indeks pendidikan.

Diarrhea is an intestinal infection characterized by the excretion of loose or watery stools three or more times a day. This disease is common in Indonesia and has the potential to become an outbreak (KLB) that often leads to death. The aim of this study is to model and identify variables that can explain the number of diarrhea cases in West Java Province. The number of diarrhea cases as the response variable is discrete data, which is generally modeled using Poisson regression. However, due to the equidispersion assumption required in Poisson regression, Negative Binomial regression is used if overdispersion occurs. Spatial aspects are also considered, so the model used in this study is Geographically Weighted Negative Binomial Regression (GWNBR). Parameter estimation is done using the Maximum Likelihood Estimation method with Newton-Raphson iteration. The GWNBR model assign specific weights to each observation location, resulting in different parameter estimates for each location. The kernel weighting function used is Fixed Bisquare, and the optimal bandwidth is determined using cross-validation (CV). The predictors used in this study are the percentage of households with access to adequate sanitation, the percentage of poor population, the number of health centers, population density, the number of general practitioners, and the education index. The results of the analysis show that the GWNBR model identified 5 groups based on significant predictors. Three predictors significantly explain the number of diarrhea cases in all districts/cities in West Java Province in 2022: the percentage of the poor population, population density, and education index."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Margaretha Ari Widowati
"The Law of Spatial Planning No.26/2007 obligates the local government to provide public UGS at least 20% of their area. The implementation faces several problems, such as budget orientation. UGS is not being prioritized since the cost always seems to exceed the benefit due to the condition that there is no market value for the benefits of UGS. This research tries to do a proper valuation of UGS using the Travel Cost Method. In addition to that, due to a widely use of social media, this study tries to explore the effect of social media on number of visit to the park. To perform this study, onsite and online survey were conducted using questionnaire to obtain data from visitors of Suropati Park, Jakarta. After comparing results using Poisson and Negative Binomial Regression, the final model estimates per-trip consumer surplus is Rp44,843, and total consumer surplus per year is approximately Rp 4.290 billion. Moreover, the social media variable shows that the strongest power of social media is to attract new users and the power become less and less as the number of visit increases because the decision to re-visit a park is strongly accounted on the perceived quality on the first visit.

Undang-Undang Penataan Ruang No.26/2007 mewajibkan pemerintah daerah untuk menyediakan RTH (Ruang Terbuka Hijau) publik setidaknya 20% dari wilayah mereka. Implementasinya menghadapi beberapa masalah, salah satunya orientasi anggaran. Pembangunan RTH tidak diprioritaskan karena biayanya dianggap selalu melebihi manfaat. Hal ini diakibatkan oleh tidak ada nilai pasar untuk manfaat yang diberikan RTH. Oleh karena itu dibutuhkan cara khusus untuk menilai manfaat RTH. Penelitian ini mencoba melakukan valuasi RTH menggunakan Metode Biaya Perjalanan. Selain itu, karena penggunaan media sosial yang luas, penelitian ini mencoba untuk mengeksplorasi efek penggunaan media sosial terhadap jumlah kunjungan ke taman. Dalam penelitian ini dilakukan survei dengan menggunakan kuesioner di tempat dan juga secara online untuk mendapatkan data dari pengunjung Taman Suropati, Jakarta. Setelah membandingkan hasil menggunakan Poisson dan Regresi Binomial Negatif, model akhir memperkirakan surplus konsumen per perjalanan adalah Rp44,843, dan total surplus konsumen per tahun sekitar Rp4.290 miliar. Selain itu, variabel media sosial menunjukkan bahwa kekuatan media sosial yang terkuat adalah untuk menarik pengguna baru dan kekuatan menjadi semakin berkurang seiring dengan meningkatnya jumlah kunjungan karena keputusan untuk mengunjungi kembali taman sangat tergantung pada persepsi pengunjung terhadap kualitas taman pada kunjungan pertama.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T55128
UI - Tesis Membership  Universitas Indonesia Library
cover
Fenny Hermawan
"Overdispersion adalah masalah yang sering ditemukan saat memodelkan data cacah. Overdispersion ditandai dengan nilai variansi lebih besar dari mean. Penyebab overdispersion yang sering terjadi adalah banyaknya pengamatan bernilai nol pada suatu data. Akibatnya, distribusi Poisson yang memiliki nilai mean dan variansi yang sama (equidispersion) tidak cocok lagi untuk memodelkan data cacah tersebut. Salah satu alternatif distribusi untuk mengatasi kondisi overdispersion adalah distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley hanya memiliki fungsi massa peluang monoton turun. Untuk menambah fleksibilitas distribusi Poisson-Lindley, distribusi tersebut diberikan bobot berupa fungsi bobot binomial negatif. Pemberian fungsi bobot binomial negatif ini tetap menghasilkan distribusi dengan nilai variansi lebih besar dari mean sehingga tetap dapat digunakan untuk mengatasi kondisi overdispersion. Distribusi baru yang diperoleh disebut distribusi weighted negative binomial Poisson-Lindley (WNBPL). Pada tugas akhir ini dibahas mengenai proses pembentukan distribusi weighted negative binomial Poisson-Lindley, beberapa karakteristiknya, dan pengestimasian parameternya dengan metode maksimum likelihood. Sebagai ilustrasi, digunakan data frekuensi klaim pemegang polis untuk dimodelkan dengan distribusi WNBPL.

Overdispersion is a common problem when modeling count data. Overdispersion is characterized by the variance greater than the mean. The cause of overdispersion that often occurs is the large number of zero-value observations in a data. As a result, the Poisson distribution which has the same mean and variance (equidispersion) is no longer suitable for modeling the count data. An alternative distribution to overcome the overdispersion condition is the Poisson-Lindley distribution. However, probability mass function of Poisson-Lindley is monotonic decreasing. To increase the flexibility of the Poisson-Lindley distribution, the distribution is given a weight function in the form of a negative binomial weight function. Giving this negative binomial weight function still creates a distribution with the variance greater than the mean to overcome overdispersion data. The new distribution obtained by giving that weight function is called the weighted negative binomial Poisson-Lindley (WNBPL) distribution. This thesis discusses the formation of the weighted negative binomial Poisson-Lindley distribution, some of its characteristics, and estimate its parameters using the maximum likelihood method. As an illustration, WNBPL distribution is used to model the data of frequency claims by policyholders."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faiz Galih Aryanata
"Coronavirus Disease 2019 (COVID-19) adalah suatu penyakit menular yang disebabkan oleh jenis baru dari coronavirus yang belum pernah ditemukan sebelumnya. COVID-19 pertama kali ditemukan di daerah Wuhan, China pada tanggal 31 Desember 2019.Organisasi Kesehatan Dunia (WHO) telah resmi menetapkan COVID-19 sebagai pandemi sejak 11 Maret 2020 dan mengimbau negara-negara untuk mengambil tindakan sesegera mungkin untuk mencegah infeksi, menyelamatkan nyawa, dan meminimalkan dampak COVID-19. Berdasarkan data WHO, diketahui ada lebih dari 200 juta kasus terkonfirmasi dan lebih dari 3 juta kematian akibat COVID-19 hingga saat ini. Penelitian ini bertujuan untuk menganalisis hubungan jumlah kasus COVID-19 dengan faktor-faktor yang mempengaruhinya di Pulau Jawa. Data dalam penelitian ini berasal dari Badan Pusat Statistik (BPS) dan Satgas COVID-19. Penelitian ini menggunakan metode analisis data berupa Regresi Linier Berganda dan Geographically Weighed Negative Binomial Regression (GWNBR). Hasil penelitian ini dengan menggunakan model GWNBR, terdapat 4 variabel yang mempengaruhi jumlah kasus COVID-19 di Pulau Jawa, yaitu jumlah penduduk, pengeluaran per kapita, persentase lansia, dan jumlah tenaga kesehatan. Jumlah penduduk dan pengeluaran per kapita berpengaruh positif terhadap jumlah kasus COVID-19, sedangkan persentase lansia dan jumlah tenaga kesehatan berpengaruh berbeda-beda.

Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by a new type of coronavirus that has never been detected before but was first discovered in Wuhan, China on December 31, 2019. The World Health Organization (WHO) officially classified this disease as a pandemic on March 11, 2020 and urged countries to take immediate action to prevent further infections in order to save lives and minimize its impact. The WHO data showed that there have been over 200 million confirmed cases and more than 3 million deaths up to the present moment. Therefore, this study aims to analyze the relationship between the number of COVID-19 cases and its influencing factors in Java. Data were obtained from Badan Pusat Statistik (BPS) and Satgas COVID-19, and analyzed using Multiple Linear Regression and Geographically Weighted Negative Binomial Regression (GWNBR). The results of the GWNBR model showed that there are 4 variables affecting the number of COVID-19 cases which include population, per capita expenditure, the elderly percentage, and the number of healthcare workers. It was discovered that the population and per capita expenditure have a positive effect on the number of cases while the elderly percentage and the number of healthcare workers have varying effects."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deni
"Runtun waktu adalah sekumpulan pengamatan kuantitatif dari sebuah kejadian yang diambil berturut-turut dengan periode yang sama. Dalam banyak penerapan, diperlukan runtun waktu dengan peubah acak diskrit yang dapat menangani pengamatan berupa count data. Salah satu model runtun waktu yang menangani count data adalah model runtun waktu Integer-valued Autoregressive order satu atau disebut INAR(1). Model ini dibangun dengan binomial thinning operator yang mengatasi masalah multiplikasi skalar dengan menerapkan operasi probabilisitik. Model INAR(1) yang umum memiliki suku pembaharuan berdistribusi Poisson dan memiliki asumsi equidispersi dimana variansi sama dengan mean pada count datanya. Akan tetapi banyak keadaan count data yang memiliki variansi yang lebih besar daripada mean yang disebut overdispersi. Salah satu penyebab overdispersi adalah banyaknya nilai nol yang berlebih pada count data. Sehingga, penggunaan model dengan asumsi equidispersi dapat mengakibatkan estimasi parameter yang kurang tepat dan hasil prediksi yang kurang valid. Oleh karena itu, salah satu model runtun waktu yang dapat menangani kasus overdispersi, yaitu model INAR(1) dengan suku pembaharuan berdistribusi Geometrik atau disebut juga INARG(1). Dalam penelitian ini, pertama dibahas mengenai binomial thinning operator, indeks dispersi dan properti pada model INARG(1). Lalu, penaksiran parameter model dilakukan menggunakan metode conditional least square. Selanjutnya, model yang didapat digunakan untuk mencari nilai ramalan pada periode selanjutnya menggunakan metode peramalan nilai tengah. Model runtun waktu INARG(1) ini diaplikasikan pada data jumlah kejahatan seksual yang dilaporkan terjadi di 21st police car beat street in Pittsburgh setiap bulannya, dari Januari 1990 hingga Desember 2001.

Time series is a set of quantitative observations of an event taken consecutively over the same period. In many applications, a time series with discrete random variables is needed that can handle observations in the form of count data. One of the time series model that handles count data is the first-order integer-valued Autoregressive time series model, or called INAR(1). This model is built with a binomial thinning operator that overcomes scalar multiplication problems by applying probabilistic operations. INAR(1) model has a Poisson distribution innovations, and the model assumes equidispersion where the variance is equal to the mean in the data count. However, in many situations, the data count has a more significant variance than the mean and it called overdispersion. One of the causes of overdispersion is the excessive number of zeros in the count data. Thus, the use of the equidispersion model can lead to inaccurate parameter estimates and invalid prediction results. Therefore, one of the time series model discussed used INAR(1) with geometric innovations or called INARG(1), where the time series model is suitable for modeling overdispersion cases. In this research, we discuss about binomial thinning operator, also the dispersion and property in INARG(1) model. Then, the model parameter estimates were determined using the Conditional Least Square method. Besides, the model is used to find the predicted value for the next period. The forecasting method in INARG(1) uses median forecasting by calculating the conditional probability of each possible nonnegative integer value. The INARG(1) time series model is applied to data on the number of reported sexual crimes occurring at the 21st police car beat street in Pittsburgh each month, from January 1990 to December 2001."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library