Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Nazria Rahmi
"Pelacakan objek merupakan salah satu permasalahan yang masih diteliti sampai saat ini. Penyelesaian permasalahan dengan menggunakan particle filter merupakan penyeleseain yang sudah banyak digunakan, namun penelitian terus dilakukan untuk meningkatkan kemampuan dari particle filter. Salah satu cara untuk meningkatkan kemampuan dari particle filter tersebut adalah dengan cara optimisasi. Optimisasi pada particle filter dapat meningkatkan akurasi dari metode particle filter pada pelacakan objek. Penelitian ini akan mencoba meningkatkan akurasi dari particle filter dengan menambahkan optimisasi cuckoo search. Cuckoo search merupakan optimisasi meta-heuristic yang berdasarkan pada kebiasaan dari burung parasit, yang dikombinasikan dengan Lévy flights. Pada experiment yang dilakukan terlihat bahwa optimisasi dari cuckoo search pada particle filter mampu meningkatkan akurasi dari pelacakan objek dibandingkan dengan metode lain. Pada penelitian ini metode yang diusulkan dapat mencapai presisi jauh lebih baik jika dibandingkan dengan metode dasar particle filter.

Object tracking is one that is still being discussed today. Solving problems using particle filters is a solution that has been widely used, but research is continuing to improve the ability of filter particles. One way to increase the ability of the particle filter is by optimizing. The optimization of filter particles can improve the accuracy of the particle filter method on the composition of objects. This research will try to improve the accuracy of particle filters by adding optimization of cuckoo search. The Cuckoo search is a meta-heuristic optimization based on the habits of the parasitic bird, combined with the flight levy. In the experiments carried out, it can be seen from the optimization of the search for cuckoo on filter particles which increases the efficiency of the object comparison compared to other methods. In this study the proposed method can achieve a precision of much better when compared to the basic method of particle filters"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Abby Rafdi Cakrasena
"Dalam pengamatan gerak Brown untuk mencari nilai koefisien difusi, dibutuhkan sebuah sistem yang memiliki akurasi tinggi untuk pendeteksian koordinat partikel dalam orde mikrometer. Pada penelitian ini dibuat sebuah sistem untuk menganalisa pergerakan partikel microbead dalam larutan nanogold dengan variasi temperatur dalam bentuk input berupa video dan menghasilkan output berupa nilai koefisien difusi dari partikel yang terdapat pada video. Sistem ini memanfaatkan machine learning sebagai detektor koordinat partikel. Digunakan TensorFlow Object Detection API sebagai backend sistem ini dan CenterNet sebagai aristektur model yang digunakan. Koordinat partikel berhasil dideteksi dengan rata-rata error pada pendeteksian senilai 0.6 piksel. Metode mean squared displacement digunakan untuk menghitung koefisien difusi. Didapatkan nilai koefisien difusi untuk microbead pada suhu 36,37,38,39,40oC secara berurutan sebesar 8.581 x 10-14, 9.925 x 10-14, 10.113 x 10-14, 10.374 x 10-14, 14.875 x 10-14 m2/s. Didapati nilai kenaikan koefisien difusi setiap kenaikan 1oC sebesar 1.3037 x 10-14 m2/s.

In observing Brownian motion to find the value of the diffusion coefficient, a system that has high accuracy is needed for the detection of particle coordinates in domain of micrometers. In this study, a system was created to analyze the movement of microbead particles in a nanogold solution with temperature variations in the form of video input and produce output in the form of the diffusion coefficient value of the particles in the video. This system utilizes machine learning as a particle coordinate detector. The TensorFlow Object Detection API is used as the backend of this system and CenterNet as the model architecture. The particle coordinates were detected successfully with an average detection error of 0.6 pixels. The mean squared displacement method is used to calculate the diffusion coefficient. The diffusion coefficient values for microbeads at a temperature of 36,37,38,39,40oC respectively were 8,581 x 10-14, 9.925 x 10-14, 10,113 x 10-14, 10,374 x 10-14, 14,875 x 10-14m2/s. It was found that the value of the increase in the diffusion coefficient for every 1oC increase was 1.3037 x 10-14 m2/s"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nanda Kurniawan
"In this research, Parrot AR.Drone as an Unmanned Aerial Vehicle (UAV) was used to track an object from above. Development of this system utilized some functions from OpenCV library and Robot Operating System (ROS). Techniques that were implemented in the system are image processing al-gorithm (Centroid-Contour Distance (CCD)), feature extraction algorithm (Principal Component Ana-lysis (PCA)) and an artificial neural network algorithm (Generalized Learning Vector Quantization (GLVQ)). The final result of this research is a program for AR.Drone to track a moving object on the floor in fast response time that is under 1 second.
Pada penelitian ini, Parrot AR.Drone digunakan sebagai pesawat tanpa awak untuk menjejaki sebuah objek dari atas. Pengembangan sistem ini memanfaatkan beberapa fungsi dari pustaka OpenCV dan Robot Operating System (ROS). Teknik-teknik yang diimplementasikan pada sistem yang dikem-bangkan adalah algoritma pengolahan citra (Centroid-Contour Distance (CCD)), algoritma ekstraksi fitur (Principal Component Analysis (PCA)), dan algoritma jaringan syaraf tiruan (Generalized Lear-ning Vector Quantization (GLVQ)). Hasil akhir dari penelitian ini adalah sebuah program untuk AR. Drone yang berfungsi untuk menjejaki sebuah objek bergerak di lantai dengan respon waktu yang ce-pat dibawah satu detik."
Fakultas Ilmu Komputer Universitas Indonesia, 2014
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
Mohamad Safhire
"ABSTRAK
Untuk dapat terus mengejar kemajuan dalam bidang robotika terutama dalam bidang microrobot dimensi robot terus diminimalisir. Peminimalisiran ini membuat terjadi beberapa halangan-halangan dalam hal komponen. Dengan menggantikan sensor yang ada dirobot menjadi sensor vision terpusat kita dapat menghiangkan banyak sekali ruang yang tadinya dipakai. Penelitian ini melakukan pengembangan sistem visual servoing untuk mobil microrobot. Sistem ini menggunakan multi object tracking dan hough transform untuk mengetahui posisi robot. Pengujian dari sistem yang dibuat mendapatkan bahwa sistem dapat mengendalikan banyak robot sekaligus. Dan dapat menggerakan robot dengan tingkat akurasi 5-6 pixel dari target yang diinginkan.

ABSTRACT
To achieve grater advancements in the fields of robotics especialy in microrobotics field the dimensions of robots are minimalize. With this isue there are several hurdles in which component can be minimize. By changing several sensors in the robot with a centralized vision sensor we can eliminate large spaces that are usualy ocuppied. A study and design of a visual servoing for microrobots have been developed. This system uses multy object tracking and hough transform to know the position of the robot. A test of the developed system conclude that it can control several robots at once. And can control robots with an accuracy of 5 6 pixels from the desired target."
2017
S67342
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardian Amping
"PT Telkom sebagai perusahaan telekomunikasi terbesar di Indonesia dengan portofolio bisnis TIMES (Telecommunication, Information, Media, Edutainment, Services) sedang merencanakan implementasi suatu platform yang dapat memberikan solusi terhadap kebutuhan Big Data Video Surveillance Analytic di Indonesia. Dengan adanya kerjasama dengan pihak PT Jasa Marga dalam bentuk pemasangan CCTV di beberapa titik di jalan tol, PT Telkom memulai penelitian Video Surveillance Analytic dalam bentuk pengembangan sistem otomasi analisis trafik. Berlatar belakang masalah tersebut, penelitian ini bertujuan untuk mendapatkan desain dan sekaligus mengimplementasikan solusi Video Surveillance Analytic untuk menghitung jumlah kendaraan di jalan tol. Penelitian ini menggunakan instrumen penelitian berupa notebook untuk mengimplementasikan desain dalam skala kecil. Sumber data penelitian berasal dari data video rekaman CCTV di jalan tol yang dimiliki DDS (Divisi Digital Service). Metodologi penelitian yang digunakan adalah metodologi observasi literatur dan metodologi pengembangan sistem menggunakan metodologi waterfall. Dari hasil wawancara, studi literatur, dan observasi, desain Video Surveillance Analytic yang sesuai dengan kebutuhan PT Telkom adalah sistem yang memiliki arsitektur terpusat menggunakan teknologi Spark. Desain sistem terdiri dari 3 blok yaitu blok masukan Video Streaming, blok Video Stream Collector, dan blok Video Stream Processor. Pengembangan sistem menggunakan bahasa pemograman Java dengan library OpenCV sebagai pengolah video, Spark berfungsi sebagai pemroses data streaming serta algoritma GMM (Gaussian Mixture Model) sebagai algoritma pendeteksi gerak. Metode analisis data menggunakan rumus akurasi deteksi. Hasil analisis data menyatakan bahwa tingkat akurasi penghitungan jumlah kendaraan pada kondisi pagi hari mencapai 98%, pada kondisi siang hari mencapai 94%, pada kondisi malam hari mencapai 50,83% dan pada kondisi macet siang hari mencapai 42,5%. Faktor yang mempengaruhi kurangnya tingkat presisi adalah pencahayaan yang kurang, dan objek bergerak yang tampak berhimpitan (trafik macet). Penelitian ini menjadi awal yang baik bagi perusahaan dalam pengembangan teknologi Spark dan video analytic dalam skala yang lebih besar.

PT Telkom as the largest telecommunications company in Indonesia with a TIMES business portfolio (Telecommunication, Information, Media, Edutainment, Services) is planning the implementation of a platform that can provide solutions to the needs of Big Data Video Surveillance Analytic in Indonesia. With the cooperation with PT Jasa Marga in the form of CCTV installation at several points on the toll road, PT Telkom began research on Video Surveillance Analytic in the form of developing a traffic analysis automation system. Against the background of this problem, this research aims to obtain a design and simultaneously implement a Video Surveillance Analytic solution to count the number of vehicles on the toll road. This research uses a research instrument in the form of a notebook to implement designs on a small scale. The source of the research data came from CCTV recorded video data on the toll road owned by DDS (Digital Service Division). The research methodology used is the literature observation methodology and system development methodology using the waterfall methodology. From interviews, literature studies, and observations, Video Surveillance Analytic design that suits PT Telkom's needs is a system that has a centralized architecture using Spark technology. The system design consists of 3 blocks namely the Video Streaming input block, the Video Stream Collector block, and the Video Stream Processor block. Development of the system uses the Java programming language with the OpenCV library as a video processor, Spark functions as a data streaming processor and the GMM (Gaussian Mixture Model) algorithm as a motion detection algorithm. The data analysis method uses the detection accuracy formula. The results of data analysis stated that the accuracy of the calculation of the number of vehicles in the morning conditions reached 98%, during the daytime conditions reached 94%, at night conditions reached 50.83% and in the daytime traffic jam conditions reached 42.5%. Factors affecting the lack of precision are low lighting and moving objects that appear coincide (traffic jam). This research is a good start for the company in developing Spark technology and video analytics on a larger scale. 

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2020
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Umi Chasanah
"

Salah satu data pelacakan objek yang menarik untuk diteliti adalah citra termal inframerah. Data tersebut tahan terhadap perubahan cahaya bahkan dapat dihasilkan pada kondisi tanpa cahaya. Disamping kelebihan yang dimiliki, pelacakan objek pada citra termal inframerah tersebut memiliki tantangan yang berbeda dari pelacakan pada citra visual spektrum, seperti kontras rendah yang merupakan karakter dari citra termal inframerah menyebabkan deteksi tepi antara objek dan latar belakang mempunyai kesulitan lebih tinggi. Penelitian ini bertujuan untuk menghasilkan metode pelacakan dengan akurasi tinggi dan dapat diimplementasikan secara real-time (20 frame per detik). Metode yang diusulkan pada penelitian ini adalah Optical Flow Tracker (OFT) dengan penambahan transformasi log adaptif (aLOFT) untuk meningkatkan kontras citra. Penambahan metode adaptive pre-processing tersebut mampu meningkatkan performa OFT. Tracker aLOFT cukup kompetitif ketika dibandingkan dengan state of the art tracker pada tantangan motion blur PTB-TIR 2019 Benchmark dengan hasil akurasi 0.905 dan kecepatan komputasi 64.9 fps.


One of the interesting objects tracking data is thermal infrared images. It is because of its ability to see in full darkness, no shadow effects and illumination robustness. However, those images object tracking has different challenges from visual images tracking, like low contrast of thermal images that cause difficulty to recognize the edge between object and background. Therefore, this research has the purpose to produce the tracker that is good in the precision score and still works in real-time (20 frames per second). In this paper, the authors proposed an adaptive log transform to enhance optical flow tracker (aLOFT) for thermal infrared images. The result of this method shows that adaptive pre-processing helps the tracker to outperform a better result compared to different preprocessing methods. The aLOFT tracker is competitive when compared to the state-of-the-art tracker PTB-TIR 2019 Benchmark in the motion blur problem with an accuracy of 0.905 and a computing speed of 64.9 fps.

 

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Haris Indra Fadhillah
"ABSTRAK
Quadcopter dalam kegunaannya kini telah diaplikasikan dalam berbagai pekerjaan, terutama dalam bidang search and rescue, dan salah satu aplikasinya yaitu dalam melacak dan mengikuti sebuah objek object tracking and object following . Penelitian ini melaporkan hasil rancangan dan uji coba program untuk mengendalikan quadcopter yang dapat melacak dan mengikuti sebuah objek 3D sederhana yang terlebih dahulu ditentukan. Algortima sistem tracking menggunakan pengolahan citra untuk mengambil informasi dari citra feature extraction , lalu informasi tersebut dijadikan acuan pergerakan quadcopter dalam mengikuti target. Sistem pelacak object object tracking , digunakan beberapa metode image processing dalam domain RGB dan Kanade-Lucas-Tomasi Tracker untuk mengoptimasi sistem tracking 2D yang mampu memaksimalkan hasil dan persentase keberhasilan yang lebih baik. Sedangkan metode estimasi jarak antara kamera dengan objek dengan mengkalibrasi kamera terhadap jarak. Dari sistem tracking, didapatkan output koordinat benda x, y, z sehingga informasi ini yang diumpan balik ke sistem kendali quadcopter sebagai error antara posisi kamera dengan posisi benda, dan dikenal dengan istilah Visual Servoing. Sistem kendali quadcopter menggunakan konstanta PID dalam megatur pergerakan pitch, throttle, dan roll, untuk memposisikan quadcopter kepada target serta mengikuti objek yang bergerak ke depan atau ke belakang.

ABSTRACT
Quadcopter in its use has now been applied in a variety of jobs, especially in the field of search and rescue, and one of the application are tracking and following an object object tracking and object following . This research reports the results of the design and program to control quadcopter that can track and follow a simple 3D objects are first determined. Algorithm tracking system uses image processing to extract information from the image feature extraction , then the information will be used as a reference movement quadcopter in following the target. The object tracking system, used various methods of image processing Gradients in the domain of RGB and Kanade Lucas Tomasi Tracker to optimizing 2D tracking system and increase the succes rate of the program. While the method of distance estimation using the camera calibration towards the distance. Output from the tracking system are the object coordinates x, y, z . This information is fed back to the quadcopter Robot Operating System ROS as the error between the position of the camera with the position of objects, and is known as Visual Servoing. Quadcopter control system using PID constants in the leading to the movement of the pitch, throttle, and roll, to maintain the position of quadcopter towards the target and follow an object moving forwards or backwards. "
2017
S70172
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nuryasin
"Kecerdasan buatan (artificial intelligence, AI) merupakan teknologi yang sedang berkembang dengan cepat pada masa ini. Adanya teknologi AI membuat banyak permasalahan sederhana dan kompleks dapat diatasi dengan program komputer. Salah satu penerapan dari teknologi AI yang memiliki perkembangan yang besar adalah pada computer vision, yang mana dapat dibuat program yang dapat mendeteksi dan mengklasifikasi objek pada suatu gambar. Pada bidang ini, computer vision dapat digunakan untuk mendeteksi rokok. Algoritma dapat dibuat untuk mengetahui jika ada objek rokok dan lokasi dari rokok tersebut pada gambar. Hal ini dapat berguna untuk menyensor rokok pada media video yang dikonsumsi oleh anak-anak. Pada media video, biasanya sensor dilakukan dengan cara manual dan dengan bantuan tracking. Cara ini dapat melelahkan karena walaupun dengan tracking, harus ada orang sebagai pendeteksi yang menunjukkan lokasi objek rokok secara berkala. Terdapat banyak arsitektur dan model algoritma untuk deteksi objek, salah satunya adalah YOLOv8 (You Only Look Once version 8). YOLOv8 adalah versi terbaru dari algoritma YOLO, yang mana merupakan salah satu algoritma state-of-the-art dalam deteksi objek. YOLO merupakan model dari Convolutional Neural Network (CNN) yang melakukan deteksi dengan konsep single stage detector, yaitu algoritma ini melakukan deteksi objek dengan menggunakan keseluruhan gambar sekaligus untuk menjadi masukan input neural network-nya. Cara ini membuat YOLO memiliki tingkat kecepatan yang tinggi mendekati real-time. Selain deteksi objek, diterapkan juga algoritma tracking yang berfungsi untuk menandai pergerakan objek rokok pada video. Sehingga objek rokok akan tetap disensor walaupun terjadi perubahan cahaya, terhalang objek lain, dan gangguan visual lainnya pada video. Algoritma tracking yang digunakan pada penelitian ini adalah ByteTrack. ByteTrack adalah algoritma tracking yang menggunakan komputasi yang minim karena dapat melakukan tracking dengan hanya memproses lokasi bounding box tiap frame video. Perbedaan algoritma ini dibandingkan yang lain adalah ByteTrack akan memanfaatkan semua hasil deteksi objek walaupun terdapat nilai confidence yang kecil. Pada penelitian ini didapatkan model training terbaik dari YOLOv8 dengan nilai presisi sebesar 86,5%, nilai recall sebesar 86,1%, nilai mAP 50 sebesar 88,1%, dan nilai mAP 50:95 sebesar 58,3%. Lalu pada konfigurasi confidence ByteTrack didapatkan hasil terbaik dengan pada confidence tahap pertama sebesar 0,247 dan tahap kedua sebesar 0,01. Hasil tracking ini mendapatkan nilai presisi sebesar 62,3%, nilai recall sebesar 62,7%, nilai akurasi sebesar 45,5%, dan nilai F1 sebesar 62,5%.

Artificial intelligence (AI) is a technology that is developing rapidly and popular in this era. AI technology creates the possibility to solve and overcome many simple complex problems. One example of the application of AI technology that has great development is computer vision, which is a concept that can make a computer program to detect and classify objects in an image.  Using computer vision, this technology can be used to detect cigarette. From image or video media, the algorithm can check if there is any cigarette and then locate the object in the image. This is useful to censor cigarette from media that consumed by children. On video medium, censorship usually done manually with the help of object tracking. This method can be tiring because even if object tracking is used, there must be a person as a detector that locate the cigarette every few frames. There are many architectures and models for object detection, YOLOv8 (You Only Look Once version 8) is one of them. YOLOv8 is the latest version of YOLO algorithm. YOLOv8 is considered as one of the state-of-the-art algorithm for object detection.  YOLO model is based from Convolutional Neural Network (CNN). The concept of this algorithm to detect object is called single stage detector, which means that it takes the whole image as input for its neural network thus only single image process needed. This concept makes YOLO fast to detect objects. Object tracking algorithm is also used to keep track detected cigarette even if there is a change in light, occlusion from other object, and other visual changes in the video. ByteTrack is used for the tracking algorithm in this study. ByteTrack works by processing bounding box location of each frame in video, making it use little computation. The main difference of this algorithm is that it process all bounding boxes from the object detection, including detected object with low confidence score. In this study, the YOLOv8 model managed to obtain the best performance with precision value of 86.5%, recall value of 86.1%, mAP 50 value of 88.1%, and mAp 50:95 value of 58.3%. For the confidence configuration of ByteTrack, best performance is achieved with 0.247 confidence score for the first association and 0.01 confidence score for the second association. The result of this configuration is a precision value of 62.5%, a recall value of 62.7%, an accuracy value of 45.5%, and a F1 score of 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Ratriyani Shaniya
"Pelacakan objek dengan menggunakan metode penggabungan dari citra visual RGB dan termal inframerah (TIR) menjadi bidang yang menarik untuk dipelajari oleh para peneliti dalam beberapa tahun terakhir karena kemampuannya untuk bertahan pada situasi dan kondisi sulit yang berkaitan dengan iluminasi cahaya seperti dalam keadaan gelap dan cuaca buruk yang tidak dapat dideteksi dengan hanya menggunakan citra RGB saja. Pada kondisi normal pelacakan objek dengan menggunakan citra RGB akan memiliki akurasi yang bagus, namun pada kondisi gelap dan cuaca buruk citra termal inframerah dapat membantu untuk tetap dapat melakukan pelacakan objek. Penggabungan keunggulan dari citra RGB dan termal inframerah diharapkan akan saling membantu untuk menutupi kelemahan dari masing-masing metode. Namun pencarian metode penggabungan terbaik dari kedua masukan tersebut masih merupakan tantangan tersendiri. Pada penelitian ini metode High Level Fusion dengan arsitektur DeepSORT dan Kalman Filter Hierarchical Estimator digunakan untuk menggabungkan citra RGB dan termal inframerah yang berfokus pada penggabungan hasil estimasi pelacakan objek dari kedua masukan. Dari hasil penelitian ini didapatkan sebuah arsitektur penggabungan metode pelacakan yang dapat mengoptimalkan hasil pelacakan dari kedua masukan dan tetap dapat bekerja ketika salah satu masukan tidak berfungsi.

RGBT object tracking has become an interesting field study for many researchers because of the robustness to overcome adverse conditions related to illumination like total darkness and bad weather where RGB detection could not perform well. Object tracking with RGB images could have excellent performance in normal conditions, but in dark and difficult weather conditions thermal infrared images could help to maintain the tracking process. This integration from RGB and thermal infrared is expected to complement each other’s strengths and weaknesses. However, it is still challenging to find the best method that can combine those two different input information. In this research, high-level data fusion method and DeepSORT architecture were used as a baseline tracking with Kalman filter Hierarchical Estimator to combine RGB and Thermal estimates for object tracking. The study results presented the combination architecture to optimize the tracking result that can perform with both inputs and maintain function if one of the inputs falls through."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>