Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 28 dokumen yang sesuai dengan query
cover
Franky
"Sentimen merupakan opini atau penilaian penulis dokumen mengenai topik yang dibahas dalam dokumen tersebut. Analisis sentimen merupakan suatu tugas yang melakukan polarisasi dokumen berupa pengklasifikasian dokumen ke dalam sentimen positif dan negatif. Penggunaan metode Naive Bayes, Maximum Entropy, dan Support Vector Machine telah ditunjukkan mampu untuk menangkap informasi sentimen dari dokumen review film pada domain bahasa Inggris (Pang, Lee, & Vaithyanathan, 2002). Laporan tugas akhir ini menjelaskan percobaan yang mengaplikasikan kembali metode Naive Bayes, Maximum Entropy, dan Support Vector Machine untuk analisis sentimen pada dokumen berbahasa Indonesia hasil penerjemahan otomatis menggunakan kamus bilingual dan program penerjemah, pada dokumen review film.
Hasil analisis sentimen yang didapat dibanding kan dengan hasil analisis sentimen pada dokumen berbahasa Inggris. Percobaan analisis sentimen dilakukan dengan memvariasikan metode penerjemahan dan pengolahan data, fitur yang digunakan, dan informasi nilai fitur berupa nilai kemunculan fitur (presence), frekuensi, normalisasi nilai frekuensi, dan pembobotan menggunakan tf-idf. Baseline untuk analisis sentimen pada bahasa Indonesia dibuat dengan metode klasifikasi yang sederhana.
Hasil yang didapat menunjukkan bahwa analisis sentimen menggunakan machine learning untuk dokumen berbahasa Indonesia hasil penerjemahan otomatis dapat dilakukan, dengan akurasi tertinggi sebesar 78.82%. Hasil ini lebih baik dari akurasi yang didapat dari baseline sebesar 52.43% tetapi tidak melebihi akurasi tertinggi pada dokumen berbahasa Inggris sebesar 80.09%, namun cukup dekat. Penggunaan fitur yang diambil dari 25% bagian terakhir dokumen memberikan hasil yang lebih baik dari penggunaan fitur yang diambil dari keseluruhan dokumen. Sementara, metode Support Vector Machine secara umum memberikan hasil analisis sentimen dengan akurasi yang lebih baik dari metode machine learning lain yang digunakan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Tarigan, Jos Timanta
"Penggunaan email filtering saat ini sudah tergolong umum. Mail server berskala intenasional sudah wajib menggunakan spam filtering untuk men-filter email yang masuk ke user. Dari beberapa metode filtering yang dikembangkan, metode content filtering adalah metode yang paling digemari. Dari beberapa tipe content filtering yang digunakan, metode bayesian filtering merupakan metode email yang palign sering digunakan. Konsep yang digunakan cukup sederhana, yaitu bila probabilitas spam dari sebuah email lebih besar dari probabilitas nonspam, maka email tersebut dianggap sebagai spam. Tugas akhir ini akan membahas email filtering yang menggunakan metode bayesian
filtering. Metode yang dibangun berdasarkan konsep yang telah dibangun oleh Paul Graham dalam artikelnya ?A Plan for Spam?. Artikel ini dinyatakan sebaga batu loncatan yang sangat berpengaruh terhadap perkembangan email filtering karena memberikan pandangan lain terhadap pengembangan spam filtering. Pada tugas akhir ini, penulis akan meneliti trik-trik yang digunakan oleh Paul Graham dalam artikelnya. Penulis akan membangun sebuah email filtering berdasarkan artikel Paul Graham kemudian memodifikasi filter tersebut kemudian melihat perbedaan kinerja dari filter."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Internet had become one of the most important thing in growth of communication.One of the facility that internet provide is electronic mail or commanly known as e-mail...."
COJUTEK
Artikel Jurnal  Universitas Indonesia Library
cover
Prajna Wira Basnur
"Klasifikasi dokumen adalah sebuah metode untuk menentukan suatu dokumen termasuk ke suatu kategori secara otomatis berdasarkan isi dokumen. Metode Naïve Bayes dan ontologi merupakan metode klasifikasi dokumen teks yang digunakan dalam penelitian ini. Data yang digunakan dalam penelitian ini berupa artikel berita berbahasa Indonesia dari situs http://www.kompas.com. Dalam penelitian ini menggunakan lima kategori dalam domain olahraga untuk melakukan klasifikasi dokumen, yaitu kategori bulutangkis, basket, otomotif, sepakbola, dan tenis. Klasifikasi dokumen dengan menggunakan ontologi dilakukan dengan membandingkan nilai kemiripan diantara dokumen dan sebuah node yang ada di ontologi. Sebuah dokumen diklasifikasikan ke sebuah kategori atau node, jika memiliki nilai kemiripan paling tinggi diantara semua node yang ada di ontologi. Hasil penelitian menunjukkan bahwa ontologi dapat digunakan untuk melakukan klasifikasi dokumen. Nilai recall, precision, dan f-measure untuk klasifikasi dokumen menggunakan ontologi berturut-turut adalah 97.03%, 91.63%, dan 94.02%.

Document classification is a method for determine document category automatically based on contents of document. In this research, we use Naïve Bayes and Ontology method for document classification. Mass media in Bahasa Indonesia is used as data in this research. Data is taken from http//www.kompas.com. We uses five category in sports domain for document classification that comprise with bulutangkis, basketball, automotive, soccer, and tennis category. Document classification uses ontology can be done with compare similarity value between document and a node in ontology. A document can classified to a category or node, if a document has highest similarity value between all node in ontology. In this research indicate that ontology can used for document classification. Recall, precision, and f-measure value for document classification using ontology in a row are 97.03%, 91.63%, and 94.02%."
2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Dyta Anggraeni
"Klasifikasi topik adalah proses pembagian dokumen sesuai dengan topik yang terkandung dari dokumen tersebut. Dalam melakukan klasifikasi topik, pada tugas akhir ini digunakan metode Naïve Bayes dan Maximum Entropi dengan dua jenis data, yaitu artikel media massa dan abstrak tulisan ilmiah dari sistem Lontar. Percobaan ini dilakukan dan dianalisis dari beberapa aspek yaitu metode dan fitur yang digunakan, banyak topik yang digunakan, dan jenis data yang digunakan.
Hasil percobaan yang didapat adalah nilai akurasi tertinggi didapat pada saat menggunakan metode Naïve Bayes dengan informasi fitur frequency-normalized yaitu 95,73%. Selain itu, jumlah token yang semakin banyak digunakan secara umum akan meningkatkan nilai akurasi dan pemakaian abstrak tulisan ilmiah memberikan nilai akurasi yang hampir mirip dengan pemakaian artikel media massa.

Topic Classification is a process of categorizing document based on the topic contained in a document. To carry out the topic classification, we use Naïve Bayes and Maximum Entropy towards mass media article and abstracts of scientific papers from Lontar System. Experiments have been done and analyzed regarding several aspects, namely the methods and features, the number of topics, and the data.
In this thesis, we found that Naïve Bayes with frequency-normalized as feature information yield the highest accuracy, 95,73%. Furthermore, as the number of the tokens used increase, the accuracy also increases. Experiments using the abstracts of scientific papers yield similar accuracy to mass media article."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Bayu Distiawan Trisedya
"Klasifikasi dokumen teks adalah masalah sederhana namun sangat penting karena manfaatnya cukup besar mengingat jumlah dokumen yang ada setiap hari semakin bertambah. Namun, kebanyakan teknik klasifikasi dokumen yang ada memerlukan labeled documents dalam jumlah besar untuk melakukan tahap training. Dalam melakukan klasifikasi dokumen, pada tugas akhir ini digunakan algoritma Expectation Maximization yang dikombinasikan dengan algoritma Naïve Bayes untuk memanfaatkan unlabeled documents dengan tiga buah kumpulan data yaitu dokumen hukum, artikel media massa, dan 20Newsgroups dataset. Selain melihat pengaruh penggunaan unlabeled documents, percobaan pada tugas akhir ini juga menganalisis hasil klasifikasi dari beberapa aspek seperti pengaruh stopwords, penggunaan jumlah kategori, dan penggunaan empat buah jenis fitur yaitu presence, frequency, frequency normalized, dan pembobotan tf-idf. Secara umum, penggunaan unlabeled documents memberikan manfaat yang cukup berarti bagi peningkatan akurasi hasil klasifikasi. Dengan konfigurasi tertentu, rata-rata peningkatan akurasi yang diperoleh dapat mencapai angka 9,5%. Namun, penggunaan unlabeled documents ini harus didukung oleh penggunaan labeled documents dalam jumlah yang tepat. Dari percobaan yang telah dilakukan diperlukan sekitar 30 hingga 60 labeled documents tiap kategorinya untuk membangun initial classifier untuk dapat memanfaatkan unlabeled documents secara maksimal.

Text documents classification is a simple problem but it is very important because the benefit is quite large considering the number of documents become more and more to handle each day. However, most of the document classification technique requires large numbers of labeled documents. In performing document classification on this final project, Expectation Maximization algorithm combined with Naïve Bayes algorithm is used to take advantage of unlabeled documents with the three set of data that is legal documents, news articles collection, and 20Newsgroups dataset. In addition to see the influence of unlabeled documents, we also analyze the classification results from several aspects such as the effect of stopwords, the number of categories, and the use of four types of features namely presence, frequency, frequency normalized, and TF-IDF. In general, the uses of unlabeled documents provide a significant benefit for increasing the classification accuracy. With a certain configuration, the average escalation in accuracy can be reached 9,5%. However, the use of unlabeled documents must be supported by the use of labeled documents in the appropriate amount. From the results obtained show that to get maximum benefit from unlabeled documents required 30 to 60 labeled documents per category."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Faza Nadila
"ABSTRAK
Jurnal ini menjelaskan penggambaran salah satu budaya Jepang yaitu hubungan Senpai-Kouhai dalam manga Hataraku Saibou. Hataraku Saibou bercerita mengenai bagaimana sel antropomorfisme bekerja untuk menghidupi tubuh yang mereka diami. Hubungan senpai-kouhai yang ada di dalam manga tersebut ditampilkan oleh beberapa karakter di dalam manga. Chie Nakane dalam bukunya Japanese Society, dan Davies & Ikeno dalam teori senpai-kouhai menjelaskan bahwa hubungan tersebut dapat terlihat dalam bentuk gramatikal tertentu dalam bahasa Jepang. Teori tokoh dan penokohan milik Nurgiyantoro digunakan untuk mendukung data. Hubungan Senpai dan Kouhai dalam manga Hataraku Saibou terbentuk oleh rentang waktu pekerjaan sel dalam divisinya masing-masing. Dalam hubungannya dengan senpai, bila kouhai ingin mengutarakan opininya, mereka harus menggunakan bahasa sopan kepada senpai. Hubungan tersebut membuat mereka menjadi sosok yang lebih baik dalam
karakter dan pekerjaannya.

ABSTRACT
The journal explains the depiction of one of the Japanese cultures, namely the relationship between Senpai-Kouhai in the Hataraku Saibou manga. Hataraku Saibou tells about how anthropomorphic cells work to support the body they live in. The relationship between senpai-kouhai in the manga is displayed by several characters in the manga. Chie Nakane in her book Japanese Society, and Davies & Ikeno in senpai-kouhai s theory explain that the relationship can be seen in certain grammatical forms in Japanese. The theory of characters and characterizations belonging to Nurgiyantoro is used to support data. The relationship between Senpai and Kouhai in the Hataraku Saibou manga was formed by the time span of cell has worked in their respective divisions. In the relationship with Senpai, if kouhai wants to state their opinion, they must use polite language to Senpai. This relationship make them better
in their character and their work."
Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2019
MK-Pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Annisa Kamalia
"ABSTRACT
Talasemia adalah penyakit yang disebabkan oleh adanya kelainan dalam hemoglobin. Penyakit talasemia merupakan penyakit herediter atau penyakit keturunan dimana pembawa gen talasemia adalah orang tua dari penderita. Di Indonesia, pada tahun 2015 diketahui jumlah kasus talasemia mencapai 7.029 kasus. Sampai saat ini talasemia belum dapat disembuhkan namun dapat dikenali sifat pembawanya dengan skrining. Dalam tugas akhir ini, akan dibandingkan performa dari dua metode yang digunakan untuk mengklasifikasikan data talasemia, yaitu K-Nearest Neighbor dan Naive Bayes. Data yang digunakan adalah 82 data pasien talasemia dan 68 data pasien non-talasemia dari Rumah Sakit Anak dan Bunda Harapan Kita, Jakarta Barat. Hasil akhir menunjukkan bahwa metode Naive Bayes memberikan nilai akurasi yang lebih besar dari K-Nearest Neighbor dalam mengklasifikasikan talasemia. Rata-rata akurasi Naive Bayes sebesar 99.775% dengan rata-rata waktu running 0.0554 detik dan rata-rata akurasi K-Nearest Neighbor adalah 97.142% dengan rata-rata waktu running 0.081 detik. Untuk nilai spesifikasi, keduanya memberikan performa yang sama, yaitu dari K-Nearest Neighbor diperoleh ketika K=3 yaitu sebesar 100% dan dari Naive Bayes sebesar 100%. Hasil rata-rata sensitivitas tertingi diberikan oleh Naive Bayes yaitu sebesar 99.59%, sedangkan K-Nearest Neighbor sebesar 96.25% untuk K=1.

ABSTRACT
Thalassemia is a disease caused by abnormalities in the hemoglobin. Thalassemia is a hereditary disease which the thalassemia gene carriers are parents of sufferers. In Indonesia, in 2015 it was found that the number of thalassemia cases reached 7,029 cases. Until now thalassemia has not been cured, but it can be recognized the nature of its carrier by screening. In this final project, the performance of the two methods will be compared to classify thalassemia data, namely K-Nearest Neighbor and Naive Bayes. The data used were 82 data on thalassemia patients and 68 data on non-thalassemia patients from Harapan Kita Children and Womans Hospital, West Jakarta. The final results show that the Naive Bayes method provides greater accuracy value than K-Nearest Neighbor in classifying thalassemia. The average accuracy of Naive Bayes is 99.775% with an average running time of 0.0554 seconds and the average accuracy of K-Nearest Neighbor is 97.142% with an average running time of 0.081 seconds. For specification values, both give the same performance. The result of specification values using K-Nearest Neighbor yield when K = 3 that is 100% and from Naive Bayes that is 100%. The highest average sensitivity results are given by Naive Bayes is 99.59%, while K-Nearest Neighbor is 96.25% for K = 1."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabilla Ayu Fauziyyah
"ABSTRACT
Dewasa ini, sudah banyak rumah sakit modern yang dilengkapi dengan peralatan monitoring yang lengkap, yang menyebabkan makin banyaknya data medis yang tersimpan. Data medis ini memiliki karakteristik khusus, dan biasanya metode statistika biasa tidak dapat diterapkan begitu saja. Dari sinilah kemudian muncul gagasan mengenai Medical Data Mining (MDM) yang sudah terbukti cocok untuk diterapkan dalam analisis data medis. Naive Bayes Classifier (NBC) merupakan salah satu implementasi dari MDM. Kendati terbukti memiliki hasil yang akurat dan memuaskan dalam proses diagnosis medis, metode-metode dalam MDM belum sepenuhnya diterima dalam praktek medis untuk diterapkan. Alasan utama mengapa metode ini belum dapat diterima adalah karena terdapatnya resistansi dari tenaga medis terhadap metode diagnosis yang baru. Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi performa NBC  pada data rekam medis pasien kanker payudara di salah satu rumah sakit di Jakarta dalam masalah klasifikasi subtipe molekular kanker payudara, serta membandingkan hasil klasifikasi NBC dengan metode MDM lain, yaitu Decision Tree (DT). Hasil analisis menunjukkan bahwa NBC mengungguli DT dengan tingkat akurasi sebesar 92,8%. Selain itu, dapat juga ditunjukkan secara empiris bahwa NBC mampu menangani missing value dengan cukup baik dan tidak membutuhkan data dalam jumlah banyak untuk tetap dapat mengklasifikasikan sebagian besar pasien dengan benar.

ABSTRACT
Nowadays, modern hospitals are well equipped with data monitoring devices, which resulted in an abundant amount of medical data. These medical data possess specific characteristics and usually, statistical methods could not be applied directly. This is what started the notion of Medical Data Mining (MDM), which has proven to be effective in analysing medical data. Naive Bayes Classifier (NBC) is an implementation of MDM. Even though MDM methods produce a sufficiently accurate and satisfying results in diagnosis problems, these methods are still not well accepted in the medical practice. One of the main reasons is because there is a resistance of physicians to a new diagnosis method. The main goal of this study is to apply and evaluate the performance of NBC in classifying breast cancer patients in a private hospital in Indonesia into five classes of molecular subtypes and compare its performance with another popular MDM method, Decision Tree (DT). Results showed that NBC outperformed DT by reaching an accuracy rate of 92.8%. This study could also show empirically that NBC does not need a big dataset to be able to achieve a high accuracy rate and that NBC could handle the problem of missing values just fine."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Junanto Prihantoro
"

Konsumsi energi nasional secara signifikan dikontribusikan oleh tenaga listrik rumah tangga. Untuk mengetahui penggunaan energi listrik di setiap peralatan listrik rumah tangga, teknik yang disebut Non-Intrusive Load Monitoring (NILM) digunakan. NILM adalah alat untuk memantau dan mengidentifikasi kekuatan setiap peralatan listrik. Baru-baru ini beberapa metode klasifikasi data seperti jaringan saraf, pembelajaran mendalam telah diterapkan untuk mengembangkan NILM. Dalam tulisan ini, metode naive bayes digunakan untuk NILM. Metode ini untuk mengklasifikasikan kondisi on-off peralatan listrik. Untuk meningkatkan akurasi, metode preprocessing data yang normalisasi dan diskritisasi digunakan. Perbandingan kinerja dievaluasi untuk setiap metode. Dalam tulisan ini, dataset REDD digunakan. Metode Supervised learning yang digunakan adalah Naive Bayes dan K Nearest Neighbour. Hasil simulasi menunjukkan bahwa dua metode ini dapat mengenali data NILM dengan akurasi yang tinggi. Metode naive bayes dengan diskritisasi memperoleh akurasi tertinggi dengan nilai 96.64% diikuti oleh KNN dengan k =5 dengan nilai 96.1287%.

 


National energy consumption is significantly contributed by household electricity. To find out the use of electrical energy in every household electrical equipment, a technique called Non-Intrusive Load Monitoring (NILM)  used. NILM is a tool to monitor and identify the strength of each electrical equipment. Recently several methods of data classification such as neural networks, deep learning have been applied to develop NILM. In this paper, the naive Bayes method used for NILM. This method is to classify the conditions of on-off electrical equipment. Accuracy to improve, data preprocessing techniques that are normalised and discretised used. Performance comparisons are evaluated for each method. In this paper, the REDD dataset used. The Supervised learning method used is Naive Bayes and K Nearest Neighbor. The simulation results of the two classification methods can recognise NILM data with high accuracy, the naive Bayes method with discretisation obtained the highest accuracy with an amount of 96.64% followed by KNN with 5 with a value of 96.1287%.

 "

2019
T53159
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3   >>