Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Haruni Krisnawati
"Natural mortality of trees is extremely variable due to the uncertainty and complexity of the functioning of forest ecosystems. The objective of this study was to develop a stand-level mortality model for Acacia mangium species by relating mortality to stand variables that affect the natural mortality process. The model was developed using data from l97 permanent sample plots measured periodically at 1-yr time intervals from 2-4 years until 8-11 years after planting in South Sumatra, Indonesia. The model consists of two complementary equations. The first equation is a logistic function predicting the probability of mortality incidence depending on stand density, site index and stand age. The second equation estimates the reduction in the number of surviving stems observed in a stand where natural mortality occurs. Nine equations were fitted using data from permanent sample plots where trees died over the time period and the best model was selected. Estimates from this second model were then adjusted by a factor equal to the probability of mortality applying three different approaches: probabilistic two-step, deterministic threshold and stochastic. All methods revealed no significant difference between the observed and the predicted number of surviving stems per ha. The probabilistic two-step approach, however, produced more consistent and the most accurate estimates. This method should provide reliable prediction when it is to be used in forest productivity prediction and management system for the species."
Bogor: Seameo Biotrop, 2018
634.6 BIO 25:3 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
David Gunawan
"Kehadiran mahasiswa merupakan aspek penting dalam kegiatan perkuliahan. Sistem kehadiran yang banyak digunakan saat ini masih menggunakan kertas, smart card, RFID, dan fingerprint, yang sering kali memerlukan kontak fisik, rentan terhadap manipulasi, atau implementasi yang kompleks. iBeacon dipilih sebagai alternatif karena kemampuannya untuk mendeteksi keberadaan perangkat melalui sinyal Bluetooth Low Energy (BLE), yang memungkinkan pemantauan kehadiran tanpa kontak fisik serta biaya implementasi dan perawatan yang lebih rendah. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan sistem pencatatan dan pemantauan kehadiran siswa otomatis berbasis teknologi iBeacon. Sistem yang dibentuk menggunakan metode pemantauan proximity iBeacon untuk penentuan pola masuk atau keluar mahasiswa. Machine learning (ML) berperan penting dalam mendeteksi pola kehadiran mahasiswa dengan memproses data proximity yang diterima dari iBeacon untuk menentukan status kehadiran. Penelitian ini memberikan rekomendasi peletakan iBeacon serta model yang dapat digunakan, menunjukkan bahwa iBeacon yang diletakkan dengan jarak pemisahan sebesar 5 meter memberikan hasil terbaik. Model Random Forest menunjukkan akurasi tertinggi pada jarak 5 meter dengan akurasi 0.9727, F1-score 0.9731, precision 0.9735, dan recall 0.9727. Model ini juga kemudian diuji coba pada ruangan lain yang memiliki layout dan luas yang serupa, dan mendapatkan hasil yang cukup memuaskan. Sistem diuji menggunakan beberapa skenario yang mencakup berbagai kemungkinan yang terjadi saat penggunaan aplikasi sistem kehadiran. Selain itu, sistem ini juga menerapkan verifikasi random checking untuk memastikan validitas kehadiran mahasiswa secara acak, yang meningkatkan keakuratan dan mengurangi kemungkinan manipulasi data. Secara keseluruhan, hasil penelitian ini menunjukkan bahwa sistem kehadiran berbasis iBeacon ini mampu meningkatkan efisiensi dan akurasi pencatatan kehadiran siswa.

Student attendance is a crucial aspect of college activities. The attendance systems widely used today still rely on paper, smart cards, RFID, and fingerprints, which often require physical contact, are prone to manipulation, or involve complex implementation. iBeacon was chosen as an alternative due to its ability to detect the presence of devices through Bluetooth Low Energy (BLE) signals, enabling contactless attendance monitoring and offering lower implementation and maintenance costs. This study aims to develop and implement an automatic student attendance recording and monitoring system based on iBeacon technology. The system employs iBeacon proximity monitoring to determine student entry or exit patterns. Machine learning (ML) plays a crucial role in detecting attendance patterns by processing proximity data received from iBeacons to determine attendance status. This study provides recommendations for iBeacon placement and suitable models, demonstrating that iBeacons placed with a separation distance of 5 meters yield the best results. The Random Forest model shows the highest accuracy at a 5-meter distance with an accuracy of 0.9727, an F1-score of 0.9731, a precision of 0.9735, and a recall of 0.9727. This model was also tested in another room with a similar layout and size, yielding satisfactory results. The system was tested using several scenarios covering various possible situations during the application of the attendance system. Additionally, the system implements random checking verification to ensure the validity of student attendance randomly, increasing accuracy and reducing the possibility of data manipulation. Overall, the findings indicate that the iBeacon-based attendance system can improve the efficiency and accuracy of student attendance recording."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Evan Chandra
"Beberapa perusahaan asuransi jiwa Indonesia mengalami permasalahan keuangan karena rendahnya premi dan terlampau idealnya ekspektasi imbal hasil investasi. Hal ini tergolong semakin berisiko jika premi yang sama diberikan pula kepada calon nasabah baru tanpa melalui proses seleksi risiko. Tabel mortalitas saat ini dan asumsi keuntungan investasi terlalu ideal, sehingga asumsi yang lebih konservatif dibutuhkan untuk memeroleh rentang premi murni tahunan yang lebih realistis. Dalam penelitian ini, tabel mortalitas lengkap diestimasi dari tabel mortalitas ringkas dengan model Heligman- Pollard terpancung dan Makeham. Parameter model mortalitas diestimasi dengan metode Bayesian melalui algoritma Metropolis-Hastings. Terhadap data pada tabel mortalitas ringkas, dilakukan proses bootstrap karena ketidakcukupan jumlah untuk proses pemodelan statistika parametrik. Diperoleh akurasi baik untuk estimasi tingkat mortalitas ringkas dengan metrik koefisien korelasi Pearson dan Mean Absolute Percentage Error. Parameter yang diperoleh juga memadai untuk mengestimasi tingkat mortalitas pada tabel mortalitas lengkap dan diekstrapolasi hingga usia 99 tahun. Tingkat imbal hasil investasi diasumsikan mendekati tingkat inflasi dan tingkat inflasi bulanan diasumsikan mengikuti proses stokastik lognormal. Hasil penelitian berbasis model normal Bayesian menunjukkan bahwa terdapat peluang baik untuk terjadinya keuntungan maupun kerugian investasi. Informasi tabel mortalitas lengkap dan rentang keuntungan investasi yang diperoleh kemudian digabungkan untuk membentuk rentang premi murni tahunan yang wajar.

Several Indonesian life insurance companies faced financial problems due to inadequate pricing and idealistic investment expectation. This condition goes riskier when equal premium rate is generalized for new customers without being underwritten. Current mortality table and investment return assumption are too ideal, so conservative assumptions are needed to get a more reasonable annual pure premium range. In this research, complete life tables are estimated from abridged life tables by truncated Heligman-Pollard and Makeham model. Parameters for mortality models are estimated by Bayesian method using Metropolis-Hastings algorithm. Data from abridged life table will be bootstrapped because of insufficient number for statistical parametric modelling. Good accuracy for estimated abridged mortality rates was reached based on Pearson correlation coefficient and Mean Absolute Percentage Error metrics. The estimated parameters were adequate to extrapolate yearly mortality rates calculation until age 99. Investment return is assumed to be close to inflation rates and monthly inflation rates are assumed to follow lognormal stochastic process. Based on Bayesian normal model, it is possible to have profitable or losing investment. Information of the complete life table and investment return range obtained are combined to form fair annual pure premium range."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library