Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Riza Zulkarnain
"Microbial Desalination Cell (MDC) 3 Chamber merupakan salah satu teknologi desalinasi yang tidak memerlukan listrik dalam menjalankan desalinasi. Namun, lamanya waktu desalinasi dan rendahnya salt removal yang dihasilkan masih menjadi kendala. Penelitian dilakukan dengan menguji coba penggunaan Debaryomyces hansenii ke MDC 3 Chamber yang baru dengan rasio volume anoda : volume garam : volume katoda yaitu 2:1:2 dan 9:1:9 dan substrat yaitu glukosa serta larutan NaCl awal 30 g/L. Variasi yang digunakan dalam penelitian yaitu rasio kultur terhadap substrat dan kenaikan volume kultur dan substrat. Untuk masing-masing MDC 3 chamber, dilakukan pengukuran salinitas dan tegangan listrik tiap jam. Data kemudian diolah untuk mendapatkan nilai salt removal sedangkan estimasi parameter kinetika Monod yaitu Pmax dan KS menggunakan Solver.
Hasil penelitian menujukkan bahwa pada kondisi optimum MDC 3 chamber yaitu pada kenaikan volume kultur dan substrat sebesar 1,5 kali dengan menggunakan Debaryomyces hansenii terbukti efektif dan cukup cepat dalam menurunkan salinitas (salt removal) yaitu 55,03 % pada jam ke-40 untuk rasio volume chamber 9:1:9 dan 30, 55 % pada jam ke-25. untuk rasio volume chamber 2:1:2. Besarnya konsentrasi awal substrat yang digunakan berpengaruh pada densitas daya yang dihasilkan. Persamaan Monod untuk kinetika MDC 3 chamber dapat diaplikasikan dengan baik pada MDC 3 chamber rasio volume chamber 2:1:2 Saccharomyces cerevisiae dan MDC 2:1:2 - Debaryomyces hansenii dengan nilai Pmax dan KS yaitu 0,103 W/m3 ; 1,13 x 104 mg/L ; 0,151 W/m3 ; 1,09 x 105 mg/L. Namun, persamaan Monod tidak dapat diaplikasikan untuk MDC 3 chamber rasio volume 9:1:9 - Debaryomyces hansenii.

Microbial Desalination Cell (MDC) 3 Chamber is one of the desalination technology that does not require electricity to run desalination. However, the length of time for desalination and low of salt removal still a constraint. The study was conducted with the use of Debaryomyces hansenii tested to MDC 3 new Chamber with anode volume ratio: the volume of salt: the volume of 2:1:2 and 9:1:9 cathode and the substrate is glucose and initial NaCl 30 g / L. Variation used in the study of culture to substrate ratio and the increase in the volume of the culture and the substrate. For each of the 3 chamber MDC, salinity measurements and the power supply voltage were taken every hour. The data is then processed to obtain salt removal while estimates of the value of the Monod kinetic parameters, namely Pmax and KS using Solver.
The results showed that the optimum conditions MDC 3 chamber culture is on the rise and substrate volume of 1.5 times using Debaryomyces hansenii proven effective and fast enough to lower the salinity (salt removal) is 55.03% at the 40th hour for the ratio chamber volume 9:1:9 and 30, 55% at the 25th hour. to chamber volume ratio 2:1:2. The magnitude of the initial concentration of the substrate that is used affects the generated power density. Monod equation to the kinetics of MDC 3 chamber can be applied to both the MDC 3 chamber volume ratio 2:1:2 Saccharomyces cerevisiae and MDC 2:1:2 - Debaryomyces hansenii and Pmax value is 0.103 W/m3 ; KS; 1.13 x 104 mg/L ; 0.151 W/m3 ; 1.09 x 105 mg/L. However, the Monod equation can not be applied to MDC 3-chamber volume ratio 9:1:9 - Debaryomyces hansenii.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41539
UI - Tesis Membership  Universitas Indonesia Library
cover
Kharis Mukhifullah
"ABSTRACT
Biochemical reactors is an essential operation units in various biotechnological processes. Biochemical reactor used to produce a large number of both intermediate products and final products, including medical products, food, beverage, and industrial solvents. The key issue is the use of modeling and control to improve the quality of bioprocess technology because it is nonlinear. Usage based adaptive control of the PI controller proportional integral aims to be able to adapt to nonlinear of the bioreactor thus obtain optimum control. The results show that the adaptive control methods, we can get a control that can work well on a special set point up or down special with an average value of performance improvements for Monod models of 7122.2 and the average value of the performance improvement for the model substrate inhibition amounted to 37.3

ABSTRACT
Reaktor biokimia adalah unit operasi penting dalam berbagai proses bioteknologi. Reaktor biokimia digunakan untuk menghasilkan sejumlah besar baik produk antara maupun produk akhir, termasuk produk medis, makanan, minuman, dan pelarut industri. Isu kuncinya adalah penggunaan pemodelan dan pengendalian untuk meningkatkan kualitas teknologi bioproses karena sifatnya yang nonlinear. Penggunaan pengendalian adaptif berbasis pengendali PI proportional-integral bertujuan agar mampu beradaptasi terhadap kenonlinearan bioreaktor tersebut sehingga mendapatkan pengendalian yang optimum. Hasilnya menunjukkan bahwa dengan metode pengendalian adaptif, kita dapat mendapatkan pengendalian yang dapat bekerja dengan baik pada set point khusus naik maupun khusus turun dengan rata-rata nilai perbaikan kinerja untuk model Monod sebesar -7122.2 dan rata-rata nilai perbaikan kinerja untuk model penghambat substrat sebesar -37.3"
2017
S66463
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sonia Limoes
"ABSTRAK
Eschericia coli BPPT-CC EgRK2, bakteri hasil rekombinasi yang dapat memproduksi enzim protein endo-b-1,4-glukanase, diteliti di dalam kultur batch untuk ditentukan parameter-parameter kinetikanya. Eschericia coli BPPT-CC EgRK2 dikultur di dalam media cair mengandung glukosa yang telah ditentukan konsentrasinya. Variabel lain seperti temperatur, agitasi, aliran udara, dan hal-hal lainnya dijaga konstan. Parameter-parameter kinetika pertumbuhan Monod dari bakteri ini, yaitu laju pertumbuhan spesifik maksimum ? max dan konstanta kejenuhan substrat Ks diestimasi menggunakan linearisasi persamaan Monod. Hasil perhitungan menunjukkan bahwa ? max dari bakteri ini adalah 1,694 h-1 dan Ks dalam substrat glukosa sebesar 6,629 g/L. Hasil ini menunjukkan bahwa kinetika dari bakteri ini jauh lebih tinggi dari galur lain pada penelitian lain yang ditemukan di literatur. Pada penelitian ini juga dilakukan peninjauan produksi selulase dengan menggunakan dua metode fermentasi, yaitu batch dan fed batch. Peninjauan terhadap jumlah produksi biomassa dan rancangan desain fermentor dilakukan dengan menggunakan perangkat lunak SuperPro Designer v9.0 dan juga perhitungan manual. Hasil menunjukkan bahwa fermentasi secara fed batch memberikan jumlah biomass yang lebih banyak daripada fermentasi batch, sehingga fermentasi fed batch merupakan metode fermentasi yang lebih baik untuk produksi enzim selulase.

ABSTRACT
Eschericia coli BPPT CC EgRK2, bacteria carrying recombinant genes to produce endo b 1,4 glucanase was studied in batch culture to determine its kinetic parameters. Eschericia coli EgRK2 were cultured in a defined liquid medium containing predetermined glucose concentration. Agitation, temperature, air flow, and others parameters remained constant. Monod growth kinetic parameters, maximum specific growth rate max dan substrate saturation constant Ks , from this bacteria were estimated by using linearization of Monod rsquo s equation. It was found that max is 1,694 h 1 and Ks in glucose substrate is 6,629 g L. These results showed that Eschericia coli BPPT CC kinetics is higher than other strain found in literature. Cellulase industrial production through two methods of fermentation, batch and fed batch is also examined in this study. Observation of biomass production and fermenters design calculation of each method is done with manual calculations and simulation software, SuperPro Designer v9.0. The results showed that fed batch fermentation gives more biomass than batch fermentation therefore, fed batch fermentation is a better fermentation method for cellulase production."
2017
S67863
UI - Skripsi Membership  Universitas Indonesia Library
cover
Terry Muhammad Octaryno
"ABSTRAK
Dalam penelitian ini pemodelan dan kontrol akan dilakukan pada bioreaktor untuk meningkatkan laju produksi bioreaktor maksimum. Model laju pertumbuhan menggunakan model Monod dan inhibitor produk-substrat. Sedangkan kontrol bioreaktor menggunakan pengontrol PI (proporsional-integral). Simulink dari Matlab digunakan untuk memodel biorektor sehingga model orde pertama ditambah waktu mati (FOPDT) diperoleh dari pengujian perubahan laju pengenceran (D). Berdasarkan FOPDT yang diperoleh, parameter pengontrol PI ditentukan menggunakan metode Ziegler-Nichols (ZN). Pengukuran kinerja kontrol digunakan integral kesalahan absolut (IAE) dan integral kesalahan kuadrat (ISE). Hasilnya dibandingkan dengan harga parameter kontrol PI dari penelitian sebelumnya. Hasil penelitiannya menunjukkan bahwa nilai D untuk mendapatkan produk maksimum adalah 0,43 jam-1 untuk Monod dan 0,36 jam-1 untuk inhibitor produk-substrat; Nilai parameter kontrol PI optimal adalah Kc = -8.801, Ti = 0,178 untuk Monod dan Kc = -4, Ti = 0,4 untuk inhibitor substrat produk dengan peningkatan rata-rata Waktu Penyelesaian = 154%, Overshoot = 221%, IAE = 503%, ISE = 13119% untuk Monod dan Waktu Penyelesaian = 302%, Overshoot = 2528%, IAE = 673%, ISE = 7558% untuk inhibitor produk-substrat.

ABSTRACT
In this research modeling and control will be carried out on the bioreactor to increase the maximum bioreactor production rate. The growth rate model uses the Monod model and substrate-product inhibitors. While the bioreactor control uses a PI controller (proportional-integral). Simulink from Matlab is used to model the biorector so that a first-order plus dead time (FOPDT) model is obtained from testing the dilution rate change (D). Based on the FOPDT obtained, the PI controller parameters are determined using the Ziegler-Nichols (ZN) method. Measurement of control performance is used integral of absolute error (IAE) and integral of square error (ISE). The results are compared with the prices of PI control parameters from previous studies. The results of his research show that the D value for obtaining the maximum product is 0.43 h-1 for Monod and 0.36 h-1 for substrate-product inhibitors; Optimal PI control parameter values ​​are Kc = -8,801, Ti = 0.178 for Monod and Kc = -4, Ti = 0.4 for product-substrate inhibitors with an average improvement of Settling Time = 154%, Overshoot = 221%, IAE = 503 %, ISE = 13119% for Monod and Settling Time = 302%, Overshoot = 2528%, IAE = 673%, ISE = 7558% for substrate-product inhibitors.
"
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sendy Winata
"

Penelitian ini menawarkan pengujian dan evaluasi dari pengaplikasian pengendali nonlinear model predictive control (NMPC) konvensional dan economic NMPC (E-NMPC) pada sistem reaktor biokimia dengan laju pertumbuhan monod dan penghambat substrat. Tujuan utama pengendalian dengan NMPC adalah optimisasi teknis yaitu dengan meminimalisir deviasi dari nilai konsentrasi biomassa dalam reaktor dengan nilai yang diinginkan. Selain itu, tujuan utama pengendalian dengan E-NMPC adalah optimisasi ekonomi dengan mengoptimisasi produksi biomassa yang dihasilkan reaktor. Variabel yang dikendalikan (CV) adalah konsentrasi biomassa dalam reaktor, sedangkan variabel yang dimanipulasi (MV) yang juga menjadi variabel keputusan pada komponen optimisasi pengendali adalah laju dilusi. Dilakukan identifikasi sistem serta formulasi algoritma dan optimisasi pengendali E-NMPC. Penyetelan pengendali NMPC dan E-NMPC dilakukan dengan fine tuning terhadap parameter-parameter tuning pengendali. Pengendali yang telah disetel disimulasikan pada perangkat lunak optimisasi paralel dengan fine tuning dari pengendali E-NMPC. Untuk menguji performa pengendali, diberikan gangguan step pada konsentrasi substrat umpan untuk mengamati respon pengendali terhadap gangguan tersebut. Parameter utama yang akan dievaluasi untuk meninjau kinerja pengendali adalah besar fungsi objektif ekonomi. Disamping itu, ditinjau juga profil MV, ISE dari CV, serta waktu komputasi pengendali. Hasil simulasi menunjukkan bahwa skema pengendalian dengan NMPC konvensional mampu menjaga dan mengubah CV ke nilai yang diinginkan. Selain itu, skema pengendalian dengan E-NMPC memiliki produktivitas berupa produksi kumulatif biomassa yang lebih tinggi daripada skema pengendalian dengan NMPC konvensional, namun memiliki waktu komputasi yang jauh lebih lama.


This research proposes an examination and evaluation on the application of conventional nonlinear model predictive control (NMPC) and economic NMPC on biochemical reactor system with monod and substrate inhibition growth kinetics. The NMPC controller’s main objective is technical optimization which minimizes the controlled variable deviation from a desired set point, whereas the E-NMPC controller’s main objective is economical optimization which maximizes the cumulative biomass production of the reactor. The controlled variable for this research is the biomass concentration insisde the reactor, whereas the manipulated variable, which also acts as a decision variable for controller optimization, is the dilution rate. Identification of the system is initially done along with formulation of the control algorithm and optimization problem statement for the E-NMPC controller. Tuning of the conventional NMPC and E-NMPC controller is done by fine tuning of the tuning parameters. A step disturbance of feed substrate concentration is used to test the controllers‘ performance. Main evaluation of the controllers‘ performance will be based on economic cost function. Other parameters that will be evaluated are the MV profile, ISE of the CV, and controllers‘ computation time. Result shows that the conventional NMPC schemes are able to bring or maintain the controlled variable to a desired set point. However, the ENMPC scheme outperform the conventional NMPC in cumulative biomass production along the simulation period at the cost of higher computational time.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library