Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Rinaldy Dalimi
"A study has been done on the potential integration of Demand Side Management (DSM) to the reduction of electric power peak load forecasting in the Indonesian electric system by using the indonesia Energy Outlook by .System Dynamic (INOSYD) model and Artificial Neural Network (ANN) method, within the study period of 2005-202l. DSM is the process of managing the consumption of energy. generally to optimize availability and development plan of energy resources. DSM application in this research refers to actions taken on the customer 's side of the matter to change the amount or timing of energy consumption, therefore it influences the reduction of the long-range forecasting of electricity peak load In this paper, the lang-term load forecasting is studied by using INOSYD model, JS T method and Model for Analysis of Energy Demand (MAED) as comparison, where the calculation results of average annual load growth rate are around 4.60% (DVOSYD) ; 7.l6% (ISD and 6.87% (MAED) respectively. Afterwards, the influence of DSM by an effort to reduce energy consumption of residential sector by an amount of 5% and l0% respectively, with the respect to the lang-term load forecasting by using INOSYD model and ANN method is performed The study results show that DSM application at residential (household sector at an amount of 5% and l 0% by using lNOS}'D model will reduce the average long-term load forecasting by about 4.95% and 9.90% respectively, meanwhile ANN method will reduce the average long-term load forecasting by about 2.74 and 5.36% respectively."
2006
JUTE-20-1-Mar2006-46
Artikel Jurnal  Universitas Indonesia Library
cover
Trisna Yuniarti
"Penelitian tesis ini mengusulkan metode data mining untuk peramalan beban listrik jangka pendek dengan menggunakan kombinasi wavelet transform dan algoritma group method of data handling (WGMDH). Wavelet transform digunakan untuk mendekomposisi dan menganalisis sinyal beban listrik yang memiliki tren dan berfungsi sebagai proses penyaringan untuk meningkatkan kualitas data sebelum dilakukan peramalan menggunakan GMDH. Metode diuji pada data beban listrik yang terdapat pada sistem ketenagalistrikan Sumatera. Kinerja metode yang diusulkan dibandingkan dengan metode GMDH tanpa kombinasi wavelet dan metode koefisien. Metode yang diusulkan dapat memperbaiki akurasi peramalan beban listrik jangka pendek dibandingkan dengan model GMDH tanpa wavelet dan metode koefisien, yaitu menghasilkan MAPE lebih kecil dari 2%.

This thesis proposes a method of data mining for short-term load forecasting using a combination of wavelet transform and group methods of data handling (WGMDH). The wavelet transform is used to decompose, analyze and filter the signals trend of the electrical load to generate electricity load data into a higher quality before forecasting using GMDH. The proposed method is tested on the datasets of the power system of Sumatera. The performance of the proposed method compared with the GMDH method without the combination of wavelet transform and coefficient method. The proposed method can improve the accuracy in short-term load forecasting rather than GMDH without wavelet and coefficient method, the MAPE result is less than 2%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45725
UI - Tesis Membership  Universitas Indonesia Library
cover
Afwan Heru Cahya
"Peramalan beban listrik, juga dikenal sebagai Probabilistic Load Forecasting (PLF), memiliki peran penting dalam industri tenaga listrik, terutama dalam merencanakan operasi sistem tenaga, menjaga stabilitas, dan memfasilitasi perdagangan energi. Di Bandar Udara Internasional Soekarno-Hatta yang merupakan sebuah entitas komersial besar, peramalan yang akurat dan andal sangat penting untuk optimalisasi layanan, kepatuhan terhadap regulasi dan meningkatkan akurasi perencanaan konsumsi energi. Tujuan penelitian ini adalah menentukan model peramalan yang akurat untuk digunakan di Bandar Udara Internasional Soekarno-Hatta. Dalam penelitian ini, empat model berbeda diuji: Seasonal Autoregressive Integrated Moving Average (SARIMA), Seasonal Autoregressive Integrated Moving Average with Exogenous (SARIMAX), serta dua model berbasis neural network, yaitu Long Short-Term Memory (LSTM) dan Gated Recurrent Units (GRU). Kemudian model ini diterapkan pada data historis harian yang dikumpulkan dari perusahaan operator bandar udara dengan rentang waktu 01 Januari 2022 hingga 31 Desember 2022. Hasil penelitian menunjukkan bahwa model LSTM mencapai performa terbaik dalam melakukan peramalan, dengan Mean Absolute Error (MAE) 12.79, Root Mean Square Error (RMSE) 15.47, dan Mean Absolute Percentage Error (MAPE) 1.91%. Sehingga berdasarkan hasil penelitian, model LSTM dapat digunakan untuk meningkatkan akurasi perencanaan konsumsi listrik harian di Bandar Udara Internasional Soekarno-Hatta dan fasilitas serupa lainnya.

Electric load forecasting, also known as Probabilistic Load Forecasting (PLF), plays a crucial role in the electricity industry, particularly in planning power system operations, maintaining stability, and facilitating energy trading. At Soekarno-Hatta International Airport, which is a large commercial entity, accurate and reliable forecasting is essential for service optimization, regulatory compliance, and improving the accuracy of energy consumption planning. The aim of this study is to identify an accurate forecasting model to be used at Soekarno-Hatta International Airport. In this study, four different models were tested: Seasonal Autoregressive Integrated Moving Average (SARIMA), SARIMA with Exogenous (SARIMAX), and two neural network-based models, Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). The models were subsequently utilized on the daily historical data gathered by the airport operating firm from January 1, 2022, to December 31, 2022. The research findings demonstrated that the LSTM model was the most effective in terms of forecasting performance, with Mean Absolute Error (MAE) of 12.79, Root Mean Square Error (RMSE) of 15.47, and Mean Absolute Percentage Error (MAPE) of 1.91%. Therefore, based on the research findings, the LSTM model can be used to improve the accuracy of daily electricity consumption planning at Soekarno-Hatta International Airport and other similar facilities."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"It has been studied the forecasting of electric power peak load in the Indonesian electric system by
using Artificial Neural Network (ANAU) Back Propagation method with the study period is 2000 - 2025.
The long-range forecasting of electric peak load is influenced by economic factors. in this study, it?s
selected the economic data which is estimated very influence to forecasting, which in this case become
input ofAN1\L i. e.: Gross of Domestic Product (GDP) per-capita, Population, Amount of Households,
Electrification Ratio, Amount of CO, Pollution, Crude Oil Price, Coal Price, Usage of Final Energy,
Usage Qf Final Energy on Industrial Sector; and Average Electric Charges. Data used for study are
actual data, start year 1990 up to 2000. Result of the peak load forecasting in the end of study (2025) by
using ANN is 85,504 MHC meanwhile the load forecasting in the National Electricity General lan
(NEGP) is 79,920 MW (the difference of both is about 6. 6%). Based on ANN approach is obtained results
that the peak load forecasting in Indonesia in the year 2005, 2010, 2015, 2020 and 2025 are 16,516 MHC
24,402 MHC 36, 15 7 MIK 56,060 MW and85,584 MW respectively.
"
Jurnal Teknologi, Vol. 19 (3) September 2005 : 211-217, 2005
JUTE-19-3-Sep2005-211
Artikel Jurnal  Universitas Indonesia Library
cover
Agus Setiawan
"Skema load shifting merupakan strategi krusial dalam upaya menekan biaya pokok penyediaan (BPP) dalam sistem pembangkitan energi. Penelitian ini mengeksplorasi dua pendekatan utama dalam pelaksanaan load shifting: yang pertama, secara aktif melalui pemanfaatan Battery Energy Storage System (BESS), dan yang kedua, secara partisipatif dengan menerapkan tarif dinamis. Fokusnya adalah pada simulasi kedua skema ini dalam jangka waktu mendatang, khususnya mengantisipasi penetrasi masif PLTS dalam lima tahun ke depan di wilayah Sistem Jawa-Madura-Bali. Hasil analisis menunjukkan bahwa baik implementasi BESS maupun penerapan tarif dinamis Time of Use (TOU) efektif dalam meningkatkan efisiensi pembangkitan listrik. Studi ini juga mengidentifikasi karakteristik unik dalam simulasi tarif dinamis TOU untuk berbagai jenis pelanggan, termasuk rumah tangga, industri, dan komersial. Penelitian ini memberikan metodologi yang praktis dan relevan bagi sistem besar di seluruh dunia, dengan studi kasus pada Sistem Jawa-Madura-Bali yang menyoroti hasil terbaik pada skenario 10.5% load shifting untuk pelanggan rumah tangga.

The load-shifting scheme plays a pivotal role in reducing the cost of electricity provision in power generation systems. This study explores two main approaches to implementing load shifting: firstly, actively through the utilization of Battery Energy Storage System (BESS), and secondly, participatively by applying dynamic tariff schemes. The focus lies on simulating both schemes in future time horizons, particularly anticipating the massive penetration of Photovoltaic Solar (PLTS) within the next five years in the Java-Madura-Bali System. The analysis results demonstrate the effectiveness of both BESS implementation and the Time of Use (TOU) dynamic tariff scheme in enhancing electricity generation efficiency. The study also identifies unique characteristics in the simulation of TOU dynamic tariffs for various types of consumers, including households, industries, and commercial entities. This research provides a practical and relevant methodology for large-scale systems worldwide, with a case study on the Java-Madura-Bali System highlighting household consumers' best outcomes in the 10.5% load-shifting scenario."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fauziah Putri Oktaviani
"Skripsi ini melakukan peramalan beban persetengahjam untuk tanggal 25 Desember tahun 2017 dan 2018 menggunakan metode koefisien beban dengan data historis tiga dan empat tahun sebelumnya sebagai acuan. Peramalan beban untuk tanggal 25 Desember 2018 bertujuan untuk mengetahui profil singkat beban persetengahjam pada tanggal tersebut. Dengan membandingkan data peramalan dengan data realisasi, penelitian ini menyatakan bahwa metode koefisien beban dianggap cukup akurat dalam melakukan peramalan pada tanggal 25 Desember 2017; peramalan beban persetengahjam dengan metode koefisien beban memperoleh nilai persentase galat APE sebesar 2,17 ; beban puncak harian pada tanggal 25 Desember 2018 akan terjadi pada pukul 18.30 dengan nilai beban 21.068 MW, sedangkan beban terendahnya akan terjadi pada pukul 07.00 dengan nilai beban 16.364,81 MW.

The focus of this study is to do the electrical forecasting every half hour on December 25th 2017 and 2018 using load coefficient method reference to the historical data. Load forecasting on December 25th, 2018 aims to find out the simple profile of load every half hour on the day. By comparing the forecasting data we have with the realization one, this study indicate that the load coefficient method is considered to be quite accurate for load forecasting on December 25th 2017 peak loads occur half an hour earlier than the forcasting load forecasting every half an hour by load coefficient method obtains absolute percentage error APE of 2,17 daily peak load on December 25th, 2018 will occur at 06.30 PM with load value of 21.068MW, while the lowest load will occur at 07.00 AM with load value of 16.364,81 MW.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Barqi Azmi
"Sebagai dasar dalam perencanaan operasi, dibutuhkan prakiraan yang tepat untuk mengetahui kebutuhan tenaga listrik dalam periode waktu tertentu. Prakiraan biasanya berupa prakiraan beban load forecasting meliputi beban puncak MW, dan prakiraan kebutuhan energi listrik MWh. Dalam melakukan prakiraan telah berkembang berbagai macam metode, salah satunya metode koefisien yang digunakan oleh PT PLN Persero- P2B untuk memprakirakan beban harian dan mingguan dengan data realisasi 3 tahun sebagai pengembangan dari metode autoregresi. Metode prakiraan ini merupakan metode yang relatif akurat dengan tingkat kesalahan terhadap nilai-nilai beban aktual berkisar 5 - 10.

A basis for operations planning, precise forecasts are needed to determine the demand for electricity over a period of time. Forecasts usually includes load forecasting including peak load MW, and forecasts for electrical energy MWh. In doing the work has evolved a variety of methods, one of which is the coefficient method used by PT PLN Persero P2B to forecast daily and weekly loads with 3 years realization data as the development of the autoregression method. This forecasting method is a relatively accurate method with an error rate against actual load values ranging from 5 10."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67179
UI - Skripsi Membership  Universitas Indonesia Library