Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Yohana Ruth Margaretha
"Sintesis komposit Li4Ti5O12 LTO nanorods dilakukan dengan karbon aktif sebanyak 3 wt dan silikon nano dengan komposisi yang berbeda sejumlah 10 wt, 15 wt, dan 20 wt. LTO memiliki karakteristik zero strain dan siklus hidup yang panjang. Akan tetapi, LTO mempunyai kapasitas terbatas dan konduktivitas elektrik buruk. Penambahan silikon nano dapat menambah kapasitas, sementara karbon aktif memiliki luas area spesifik yang besar untuk meningkatkan konduktivitas elektrik. Cetakan nanorods berasal dari TiO2 yang didapatkan dari titanium IV butoksida menggunakan metode sol-gel. Struktur nanorods didapatkan dengan proses hidrotermal dalam larutan NaOH 4 M. Namun, struktur yang terbentuk adalah struktur needle-like dan fase yang terbentuk adalah Li2TiO3. Performa baterai ditentukan dengan uji CV, CD, dan EIS. Hasil pengujian EIS menunjukkan bahwa LTO memiliki konduktivitas elektrik tertinggi. Hasil yang diperoleh dari uji CV adalah kapasitas spesifik tertinggi ditemukan pada LTO-AC/15 Si nano sejumlah 140,7 mAh/g.

The synthesis of Li4Ti5O12 LTO nanorods composites with 3 wt activated carbons AC and nano Si with different composition of 10 wt, 15 wt, and 20 wt has been carried out. LTO has zero strain characteristics with the long life cycle. However, the capacity is limited and has poor electrical conductivity. The addition of nano Si should enhance the capacity, while the activated carbon should provide a large specific surface area to increase the electrical conductivity. The nanorods templates are from TiO2, which obtained from titanium IV butoxide using the sol gel method. The nanorods structures should be achieved by a hydrothermal process in NaOH 4 M solution. However, needle like structures are achieved and Li2TiO3 phase is formed finally. The battery performances are determined by CV, CD, and EIS tests. EIS results showed the highest electrical conductivity was found in LTO only. The CV test obtained that the highest specific capacity was found in LTO AC 15 nano Si with 140.7 mAh g as well as charge discharge capacity at current rate 0.2 to 20 C."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rangga Pranoto Nugroho
"Litium titanat merupakan salah satu senyawa yang digunakan sebagai anoda pada baterai litium ion. Senyawa ini disintesis dengan menggunakan metode solid state dengan mencampurkan xerogel TiO2 yang dihasilkan dari metode sol-gel dengan rasio hidrolisis Rw 2,00, dan litium karbonat (Li2CO3) sebagai sumber lithium dan dilakukan sintering pada suhu 650°C. Pada penelitian ini, xerogel TiO2 dicampurkan dengan empat variasi komposisi litium yaitu stoikiometris, excess 5%, excess 10%, dan excess 15% pada High-Energy Ball Miller (HEBM) selama 1 jam. Pengaruh dari masing-masing komposisi diamati dengan X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), Simultaneous Thermal Analysis (STA) dan Scanning Electron Microscope (SEM).
Hasil penelitian menunjukkan bahwa pada komposisi litium stoikiometris dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 19,19 nm, luas permukaan 11,47 m2/g, struktur morfologi tidak beraturan (aglomerasi). Pada komposisi litium excess 5% dihasilkan Li4Ti5O12 dengan ukuran kristalit 41,55 nm, luas permukaan 58,80 m2/g, dan sturktur morfologi tidak beraturan (aglomerasi). Pada komposisi litium excess 10% dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 43,12 nm, luas permukaan 72,06 m2/g, dan struktur morfologi tidak beraturan (aglomerasi). Sedangkan, pada komposisi litium excess 15% dihasilkan senyawa Li4Ti5O12 dengan ukuran kristalit 50,31 nm, luas permukaan 9,06 m2/g, dan struktur morfologi tidak beraturan (aglomerasi).

Lithium titanate (Li4Ti5O12)/LTO is one of the compounds used as anodes in lithium ion batteries. This compound is synthesized using solid state method by mixing TiO2 anatase prepared by sol-gel method with hydrolisis ratio Rw 2,00 calcined at 300oC for 2 h and lithium carbonate (Li2CO3) as a source of lithium and then sintering is performed at 650oC. The TiO2 anatase are mixed with stoichiometric, 5% excess, 10% excess, and 15% excess lithium compositions in High-Energy Ball Miller (HEBM) for 1 h. The compounds obtained are observed using X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), Simultaneous Thermal Analysis (STA) and Scanning Electron Microscope (SEM).
The results showed the compounds of Li2TiO3, TiO2 rutile, and small amount of Li4Ti5O12 with irregular morphological structures (agglomeration). The stoichiometric lithium compositions produces average crystallite sizes 19,19 nm and surface area 11,47 m2/g. Then, the 5% excess lithium compositions produces average crystallite sizes 41,55 nm and surface area 58,80 m2/g. Further, the 10% excess lithium compositions produces average crystallite sizes 43,12 nm and surface area 72,06 m2/g. Finally, the 15% excess lithium compositions produces average crystallite sizes 50,31 nm and surface area 9,06 m2/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60325
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sihombing, Dian Sepala
"ABSTRAK
Optimasi Anoda LTO-Sn dengan Penambahan Karbon Aktif pada Baterai Litium-ion Penelitian ini membahas mengenai optimasi anoda LTO-Sn dengan penambahan karbon aktif. Persen Sn yang ditambahkan adalah 5, 7.5, dan 12.5 berat. Sementara pada LTO dengan kadar karbon 5, 15 dan 25 berat, ditambahkan Sn 7.5 berat. Analisi sintesis material dilakukan dengan menguji XRD, BET dan SEM. Analisis performa baterai dilakukan dengan uji EIS, CV, dan CD. Didapatkan luas permukaan yang lebih besar dengan penambahan karbon. Pengamatan SEM juga menunjukkan morfologi yang lebih halus, ditunjukkan dengan ukuran partikel yang lebih kecil, walaupun masih terdapat aglomerat beras dan kecil. Hasil EIS menunjukkan penambahan Sn memberikan nilai konduktivitas yang lebih baik, sementara penambahan karbon menurunkan konduktivitas. Hasil CD menunjukkan penambahan Sn menurunkan kapasitas pada 12C sementara penambahan karbon menaikkan kapasitas yang bisa tercapai. Hasil XRD dan CV menunjukkan terdapat senyawa LTO, TiO2 rutile, TiO2 anatase, dan Sn. LTO dengan penambahan Sn 7.5 dan karbon 5 menjadi parameter optimum untuk mencapai kapasitas sebesar 270.2 mAh/g pada saat discharge dan LTO dengan penambahan Sn 12.5 menjadi sampel dengan kapasitas charge terbesar yaitu 191.1 mAh/g

ABSTRACT
Optimization of LTO Sn Anode with Activated Carbon Addition on Lithium ion Batteries This study discusses the LTO Sn anode optimization with the addition of activated carbon. Percent Sn added was 5, 7.5, and 12.5 wt. While the LTO with a carbon content of 5, 15 and 25 added 7.5 wt Sn. Analysis done by testing the material synthesis XRD, BET and SEM. Analysis of the performance of the battery is done by using EIS, CV, and CD. Obtained a larger surface area with the addition of carbon. SEM observations also show finer morphology, shown with a smaller particle size, although there are small and big agglomerates. EIS results showed the addition of Sn provides better conductivity value, while the addition of carbon to lower the conductivity. The CD results showed the addition of Sn lowering capacity at 12C while adding carbon to raise capacity that could be achieved at same C rates. The results of XRD and CV shows there are LTO compound, TiO2 rutile, TiO2 anatase, and Sn. LTO with the addition of Sn 7.5 and 5 carbon given optimum parameters to achieve a capacity of 270.2 mAh g at discharge. LTO with the addition of Sn 12.5 to the sample achieve a charge capacity 191.1 mAh g"
2017
T46920
UI - Tesis Membership  Universitas Indonesia Library
cover
Muksin, Author
"Litium titanat (Li4Ti5O12) merupakan senyawa yang digunakan sebagai anoda baterai ion litium. Senyawa litium titanat disintesis berdasarkan metode solid state dengan mereaksikan TiO2 xerogel yang dibuat dengan metode sol-gel dan litium oksida (Li2O). Dalam penelitian ini menggunakan tiga variasi penambahan kadar massa litium oksida (Li2O); massa Li2O sesuai stokiometri (0% melebihi stokiometri), 50% massa Li2O melebihi stokiometri dan 100% melebihi nilai stokiometri. Pengaruh dari penambahan kadar massa litium oksida (Li2O) pada struktur, morfologi, dan energi celah pita tersebut diamati. Sampel yang terbentuk diuji dengan menggunakan X-Ray diffraction, scanning electron microscope (SEM) dan UV-Vis spectroscopy.
Hasil penelitian menunjukan bahwa dengan penambahan massa Li2O sesuai stokiometri membentuk senyawa Li4Ti5O12 dan pengotor seperti TiO2 rutile dan Li2TiO3 dengan ukuran kristalit 13,7 nm, ukuran diameter partikel 0,540 μm band gap energy 3,864 eV, penambahan massa Li2O 50% melebihi stokiometri membentuk senyawa Li2TiO3 dengan ukuran kristalit 7,2 nm, ukuran diameter partikel 1,062 μm dan band gap energy 3,838 eV dan penambahan 100% massa Li2O melebihi stokiometri membentuk Li2TiO3 dengan ukuran kristalit 12,4 nm, ukuran diameter partikel 1,916 μm dan band gap energy 3,778 eV. Senyawa Li4Ti5O12 terbentuk hanya dengan penambahan Li2O sesuai stokiometri. Untuk mensintesis senyawa Li4Ti5O12 bebas dari pengotor mengunakan metode solid state dapat mengacu pada diagram fasa Li2O-TiO2 (29% mol Li2O-71% mol TiO2).

Lithium titanate (Li4Ti5O12) is anode material for application in lithium ion battery. Lithium titanate was synthesized by solid-state method using xerogel TiO2 was prepared by sol–gel process and commercial lithium oxide (Li2O) powder. This research uses 3 various content of lithium oxide (Li2O); 0% Li2O mass excess, 50% Li2O mass excess, and 100% Li2O mass excess. The effect of adding lithium oxide (Li2O) on structure, morphology of particle surface, and band gap energy was examined. Samples were obtained by X-ray diffraction, scanning electron microscope (SEM), ultraviolet visible (UV-Vis).
The results show with adding lithium oxide stoichiometry (0% Li2O excess) produces Li4Ti5O12 and impurities such as rutile TiO2 and Li2TiO3, it produces Li2TiO3 with 50% Li2O excess and it produces Li2TiO3 with 100% Li2O excess. In this research show with appropriate of stochiometry content (0% Li2O excess) produces Li4Ti5O12 with crystallite size is 13,7 nm and impurities namely Li2TiO3 with crystallite size is 22,8 nm and TiO2 with crystallite size 9,14 nm, diameter particle size is 0,540 μm and bandgap energy 3,864 eV. 50% Li2O excess produces Li2TiO3 with crystallite size 7,2 nm, diameter particle size is 1,062 μm and bandgap energy 3,838 eV and with 100% Li2O excess produces Li2TiO3 with crystallite size 12,4 nm, diameter particle size is 1,916 μm and band gap energy is 3,778 eV. The Li4Ti5O12 compound was formed only with appropriate of stoichiometry content. In order to make high purity of Li4Ti5O12 compound on solid state reaction, Li2O-TiO2 phase diagram (29% mol Li2O-71% mol TiO2) can be used as reference.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56740
UI - Skripsi Membership  Universitas Indonesia Library