Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Dianita Wangsamulia
"Program konversi minyak tanah ke LPG yang dilakukan oleh pemerintah telah menaikkan permintaan masyarakat akan LPG. LPG merupakan hasil pencairan hidrokarbon fraksi C3 dan C4 yang berasal dari minyak dan gas bumi yang merupakan sumber yang tidak dapat diperbaharui. Untuk memenuhi kebutuhan akan LPG tersebut mulai dikembangkan sumber energi alternatif seperti minyak nabati yang mengandung trigliserida yang mirip dengan komponen penyusun minyak bumi. Penelitian sebelumnya telah berhasil merengkah minyak kelapa sawit (CPO) menggunakan katalis alumina dengan yield fraksi C3 dan C4 sebesar 2,12% dan 11,53%. Pada penelitian ini, CPO diganti dengan minyak jarak pagar semi mulus (Straight jatropha oil-SJO). SJO merupakan minyak yang non-edible karena sifatnya beracun sehingga pemanfaatannya sebagai sumber bahan bakar alternatif tidak akan bertentangan dengan kebutuhan pangan manusia seperti pada pemanfaatan minyak nabati lain. Di samping itu, SJO memiliki jumlah ikatan tak jenuh yang lebih banyak sehingga akan lebih mudah direngkah jika dibandingkan dengan CPO. Perengkahan SJO dengan menggunakan katalis alumina (Al2O3) dilakukan pada fasa cair dan tekanan atmosferik secara tumpak dengan variasi suhu (320°C, 330°C, dan 340°C) dan rasio katalis/SJO (1:75 dan 1:100). Produk gas dianalisis dengan gas chromatography, sedangkan produk cair yang diperoleh melalui proses distilasi untuk kemudian dilakukan uji densitas dan analisis FTIR. Penelitian yang dilakukan berhasil merengkah SJO yang ditunjukkan dari analisa FTIR di mana jumlah ikatan C=C bertambah sementara jumlah alkil (-CH3 dan =CH2), gugus ester (O - C=O), serta ikatan - (CH2)n - berkurang jika dibandingkan dengan kondisi awalnya. Perengkahan yang terjadi juga menaikkan densitas dari SJO sisa reaksi akibat adanya reaksi propagasi. Pada awalnya, penelitian ini bertujuan untuk memperoleh hidrokarbon fraksi C3 dan C4 dari SJO, namun dari hasil analisa GC diperoleh produk gas yang mayoritas berupa C4 dengan yield dan konversi yang tinggi. Hal ini terkait dengan mekanisme perengkahan SJO itu sendiri sekaligus menunjukkan bahwa reaksi perengkahan yang dilakukan selektif terhadap pembentukan C4. Hasil optimum diperoleh pada suhu reaksi 320°C dengan massa katalis/SJO = 1:100 setelah reaksi berlangsung selama 20 menit dengan yield C4 mencapai 70% dan konversi sebesar 64,1%.

Government's conversion program from kerosene to LPG makes the demand of LPG increase. LPG is product from natural gas and petroleum processing which are un-renewable energy and the amount is limited. It makes people starts to search alternative energy for substitute oil and natural gas such as natural oil whose has triglycerides that similar with component of oil and natural gas. Previously research success to synthesizing hydrocarbon of C3 ' C4 from crude palm oil (CPO) by catalytic cracking reaction using alumina with maximum result is 2,12% C3 and 11,53% C4. In this research, CPO is replaced by straight jatropha oil (SJO). SJO is non-edible so the usage for alternative energy won't compete for resources needed to grow food. Cracking of SJO already done both thermal or catalytic. The numbers of saturated bond in SJO is more than in CPO and it makes SJO easier to crack than CPO. Catalytic cracking reaction of SJO using alumina run in liquid phase, atmospheric pressure, and batch. The reaction was varied by cracking temperature (320°C; 330°C; 340°C) and catalyst/SJO mass ratio (1:75 ; 1:100). The gas product was analyzed using GC and the liquid product was gathered by distillation process for being tested of it's density, IBP, and analyzed by FTIR. In this research, SJO cracking was proven by the increasing of C=C bond and decreasing of ('CH3 and =CH2) alkyl and '(CH2)n' bond , and increasing of ('CH3) alkyl in liquid product based on the FTIR analysis. SJO cracking also increase the density of liquid because of propagation reaction. The optimum research obtained by yield C4 = 70% and conversion C4 = 64,1% when reaction run at 320°C with ratio mass catalyst and SJO after the reaction run for 20 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52270
UI - Skripsi Open  Universitas Indonesia Library
cover
Kelly Fajria Sugiarto
"Ozon dapat diproduksi secara artifisial melalui lucutan listrik dalam reaktor Dielectric Barrier Discharge (DBD). Produksi ozon dalam reaktor DBD juga memiliki potensi untuk menghasilkan produk sampingan nitrat, sehingga potensi penggunaan reaktor DBD dapat dikaji lebih lanjut. Dalam penelitian ini dilakukan uji kinerja reaktor dengan memvariasikan daya dan laju massa umpan untuk mendapatkan kondisi operasi terbaik dalam produksi ozon, kondisi operasi terbaik lalu digunakan untuk uji dekomposisi ozon dengan membandingkan 2 katalis yaitu Alumina dan Alumina/Fe(III). Uji dekomposisi ozon bertujuan untuk menguji aktivitas dekomposisi katalitik dari katalis, beserta pengaruh dekomposisi ozon katalitik dalam pembentukan nitrat, dengan hipotesis bahwa dekomposisi ozon akan menghasilkan  O yang akan bereaksi dengan N , meningkatkan produksi Nitrat. Impregnasi dari Alumina bertujuan untuk mendapatkan Alumina dengan aktivitas, selektivitas, dan stabilitas yang lebih tinggi. Produksi ozon terbaik didapatkan pada laju alir 3 L/menit dan tegangan 220 VAC (Volt Alternating Current) pada reaktor 1 serta 65 VAC pada reaktor 2. Alumina/Fe(III) memberikan aktivitas dekomposisi ozon menjadi oksigen tertinggi dibandingkan dengan Alumina, mencapai 100% pada Weight Hourly Space Velocity (WHSV) 1 menit-1. Namun, ditemukan bahwa penggunaan katalis berbasis Alumina pada WHSV 1 menit-1 justru mereduksi gas NOX dan menurunkan produksi nitrat hingga 94%. Melihat dari tingginya aktivitas katalitik dan ketersediaan dari Alumina/Fe(III), Alumina/Fe(III) dapat diuji lebih lanjut untuk dekomposisi katalitik. Selain itu, ditemukan bahwa produksi nitrat lebih tinggi didapatkan pada larutan dengan pH 10 dibandingkan pH 6.7.

Ozone can be produced artificially through electrical discharge in a Dielectric Barrier Discharge reactor. Ozone production in DBD reactors also has the potential to produce nitrate byproducts, so the potential use of DBD reactors can be studied further. In this study, reactor performance tests were carried out by varying the power and feed mass rate to obtain the best operating conditions for ozone production, the best operating conditions and then used for ozone decomposition tests by comparing 2 catalysts, Alumina and Alumina/Fe (III). The ozone decomposition test is aimed to test the catalytic decomposition activity of the catalyst, along with the effect of catalytic ozone decomposition in NOx formation, with the hypothesis that ozone decomposition will produce  O that will react with  N, increasing the production of Nitrate. The impregnation of Alumina aims to obtain Alumina with higher activity, selectivity, and stability. The best ozone production is obtained at a flow rate of 3 L/menit and a power of 220 VAC (Volt Alternating Current) in reactor 1 and 65 VAC in reactor 2. Alumina/Fe(III) gives the highest ozone decomposition activity compared to Alumina, up to 100% on Weight Hourly Space Velocity (WHSV) 1 minute-1. However, it was found that the use of an Alumina-based catalyst at WHSV 1 min-1 actually reduced NOX gas and reduced nitrate production by 94%. However, it was found that the use of Aluminabased catalysts actually reduced NOX gas and reduced nitrate production by 94%. Given the high catalytic activity and availability of Alumina/Fe(III), Alumina/Fe(III) can be further tested for catalytic decomposition. In addition, it was found that higher nitrate production was obtained in solutions with a pH of 10 compared to a pH of 6.7."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sudirman
"Katalis berperan penling dalam industri guna meningkatkan kinerja proses kimia di dalamnya. Katalis membantu dalam mempercepat reaksi kimia mencapai kesetimbangannya, meningkatkan jumlah produk dan meningkatkan efisiensi biaya proses. Penggunaan katalis yang tepat akan mengoptimalkan suatu sintesa proses kimia. Salah satu usaha yang dapat dilakukan untuk meningkatkan aktivitas katalis adalah mengoptimalkan rasio dari komponen-komponen penyusun katalis.
Penelitian ini mempelajari pengaruh rasio B/(Al+B) terhadap sifat katalitik katalis Alumina-Aluminum Barat (Al2O3-AlBO3 atau AAB) pada reaksi dehidrasi etanol. Preparasi AAB dilakukan dengan variasi mol B/(Al+B) sebcsar 0.05, 0.2, 0.4, 0.5 dan 0.6 Uji karakterisasi katalis tersebut menggunakan metode XRD. Hasil analisisnya menunjukkan bahwa bentuk struktur kelima jenis katalis AAB tersebut adalah amorf dimana penambahan atom Boron menyebabkan perubahan struktur katalis dari fasa kristalin oksida muminya menjadi struktur amorf AAB.
Hasil uji aktifitas katalis pada reaksi dehidrasi etanol menunjukkan bahwa besarnya rasio B(Al+B) mempengaruhi kemampuan katalis AAB dalam mengkonversi etanol. Semakin besar rasio tersebut menyebabkan konversi etanol, yield produk etilen dan dietil-eler semakin tinggi pula. Katalis AAB-0.6 dengan rasio B/(Al+B) = 0.6 merupakan katalis yang memberikan konversi etanol dan yield produk terbesar pada semua temperatur reaksi, dengan urutan AAB-0.6>AAB-0.5>AAB-0.4>AAB-0.2>AAB-0.05.
Dengan menggunakan W/F = 0.2456 gr. katalis det/ml, diperoleh konversi etanol terbesar 76.7% pada temperatur 425°C. Yield etilen maksimum sebesar 76.7% diperoleh pada temperatur yang sama dengan selektivitas 100%. Sedangkan yield dietil-eter maksimum adalah 12.0% pada temperatur 315°C dengan selektifitas maksimum 55%. Semakin besar rasio B/(Al+B) mempercepat terjadinya shift selectivity dari produk dehidrasi etanol.
Reaksi dehidrasi etanol terjadi secara seri dan paralel dengan etilen sebagai produk akhir dan dietil-eter sebagai produk antara. Reaksi ini berkatalis asam, sehingga keasaman yang tinggi menyebabkan reaksi pembentukan produk akhir (reaksi pembentukan etilen) menjadi lebih dominan. Keasaman yang tinggi dapat diperoleh dengan meningkatkan kandungan boron dalam katalis AAB."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S50810
UI - Skripsi Membership  Universitas Indonesia Library