Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
cover
Sembiring, Zipora
"Struktur kompleks logam transisi yang mengandung gugus -N=6-6=N- dan ikatan tidak jenuh pada ligan yang membentuk kromofor ditemukan pada logam besi (II) dengan ligan 1,10-fenantrolin (fen) dan derivatnya (4,7-dimetilfenantrolin). Kompleks ini sangat stabil dan memberikan warna-warna yang tajam sehingga memungkinkan untuk digunakan sebagai indikator warna, Ligan sianida merupakan ion medan sangat kuat, sehingga diharapkan dapat menggantikan kedudukan salah satu ligan feroin. Dari basil penelitian penentuan stoikiometri berdasarkan perbandingan mol diperoleh hasil Fe(II) fen dan dmfen = 1:3, sedangkan untuk masing-masing kompleks [Fe(fen)312 dan [Fe(dmfen)3]2+: ligan ion CN- = 1:2 maka molekul kompleks yang terbentuk adalah (Fe(L)2(CN)2]. Dari penelitian tentang momen magnet dan spektrum serapan ultraungu-tampak menghasilkan tentang bagaimana terbentuknya ikatan dalam kompleks. Molekul kompleks [Fe(L)2(CN)2} adalah oktahedral dan hibridisasinya d2sp3. Spektrum serapan-tampak pada variasi pelarut berdasarkan bilangan akseptor (BA) elektron terhadap kompleks menunjukkan transisi terjadi pada orbital t2g--t*. Spektrum serapan menunjukkan bahwa semakin besar BA pelarut, penurunan tingkat energi orbiral tea akan semakin besar pula, sehingga transisi t2g-st* membutuhkan energi yang lebih besar. Senyawa kompleks dengan variasi pelarut memberikan warna-warna tertentu kecuali pada pelarut asam format memberikan warna yang sama, yaitu kuning. Aplikasi kompleks dalam penentuan komposisi etanol-air menunjukkan bahwa kompleks dapat digunakan sebagai indikator warna dan dari selisih AXinaks ditemukan bahwa kompleks [Fe(fen)2(CN)2] lebih baik digunakan sebagai indikator warna daripada kompleks [Fe(dmfen)2(CN)2).

The structure of transition metal complexes containing functional group of -N=6-6=N- and of unsaturated bonds for ligand forming cromophore is found in iron (II) metal and in 1,10-phenantrolin ligand and in its derivatives (4,7--dimetilphenantrolin)_ These complexes are very stable and can produce specific colors, so they are potential to be used as color indicators. Cyanide ligand is a very strong field ion and that it is expected to be able to replace the position of any pheroin ligand. The result of stoichiometry study based on mole comparisons was Fe(II): phen and dmphen = 1 : 3, whereas for each complex of [Fe(phen)312+ and [Fe(dmphen}312+ : ligand CN- ion = 1 : 2, formed complex molecules [ Fe (L) 2 (CN) 2 ] . Study of mdyiietiu moment. and uv--V is spectrums showed 'how bonds .iii complexes are rormeu. Complex molecules [Fe(L)2(CN)2) is octahedral-and is the hibridi sation of d2sp3. Visible-spectrum absorbtion for varied solvents based oIl acceptor dumber (AN)) of electrons for complex occured at a transition of t2g-n orbital. Visible-spectrum absorbtion showed that the more acceptor number of solvents, the less the orbital energy level of t2g, therefore t2g-n* orbital will need more energy. Complex compounds with varied solvents produce specific colors except for format acid solvents which produce the same color, yellow. The application of complexes in determining the composition of ethanol-water showed that the complex can be used as color indicators and from its &.max showed that (Fe (fen) 2 (CN) 2) complex is better than [Fe(dmfen)2(CN)21 complex as color indicators.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Farras Syuja
"Studi ini bertujuan untuk mendeteksi terbentuknya DNA adduct 8-OHdG (8-hidroksi-2’-deoksiguanosin) yang merupakan salah satu biomarker dari kerusakan DNA dan mengkonfirmasi adanya efek sinergis antara paparan xenobiotik parakuat diklorida dengan logam berat seperti besi(II) dan timbal(II). Studi in vitro dilakukan dengan mereaksikan salah satu basa DNA (2’-deoksiguanosin), dengan H2O2, parakuat diklorida, Fe(II) dan Pb(II) melalui reaksi fenton dan fenton-like. Setiap sampel diberikan perlakuan dan kondisi yang sama yaitu pada variasi pH 7,4 dan 8,4 dan diinkubasi selama 24 jam pada suhu 370C. Analisa pembentukan 8-OHdG dalam sampel dilakukan menggunakan instrument HPLC fasa terbalik dengan detektor uv-vis. Hasil dari penelitian ini menunjukkan bahwa parakuat dapat berinteraksi dengan basa 2-deoxyguanosine dan menginduksi pembentukan 8-OHdG. Logam Fe(II) dan Pb(II) memberikan efek yang sinergis dengan parakuat diklorida, hal ini dibuktikan dengan bertambahnya nilai konsentrasi 8-OHdG yang terbentuk ketika ditambahkan logam tersebut. Paparan parakuat diklorida, Fe(II) dan Pb(II) berkontribusi pada pembentukan ROS dan mengarah ke tingkat pembentukan 8-OHdG yang lebih tinggi. Selain itu, kondisi pH juga mempengaruhi pembentukan 8-OHdG. Hal ini dibuktikan dengan nilai konsentrasi 8-OHdG yang lebih tinggi pada sampel yang memiliki pH 8.4 dibandingkan pH 7.4. Dalam studi in vivo dilakukan dengan menggunakan kelompok tikus putih (Rattus norvegicus) galur sprague dawley yang diberikan paparan parkuat diklorida, Pb(II) dan Fe(II) melalui rute ingesti (oral) selama 28 hari. Kemudian sampel urin dan serum diambil setiap minggu dan dilakukan analisis pembentukan 8-OHdG menggunakan ELISA KIT dan LC-MS.

This study aims to detect the formation of DNA adduct 8-OHdG (8- hydroxy-2’-deoxyguanosine), one of the biomarkers of DNA damage, and to confirm the synergistic effect of xenobiotic exposure of paraquat dichloride and heavy metals such as Fe(II) and Pb(II). This in vitro study was done by reacting one of the bases in DNA (i.e., 2’-deoxyguanosine) with H2O2, paraquat dichloride, Fe(II), and Pb(II) through  Fenton and Fenton-like reactions. Each sample was treated equally in the same condition, namely the variations of ph 7.4 and 8.4, and was incubated for 24 hours at a temperature of 370C. The 8-OHdG formation analysis was made using reverse-phase HPLC with a uv-vis detector. The mobile phase in this study was the buffer solution of natrium phosphate 10 mM pH 6.7 with methanol. This study found that paraquat can interact with base 2’-deoxyguanosine and induce the formation of 8-OHdG.  Fe(II) and Pb(II) exhibited a synergistic effect with paraquat dichloride, as indicated by the increase in 8-OHdG concentration when the metals were added. This study showed that paraquat dichloride, Fe(II), and Pb(II) contribute to the formation of ROS and lead to formation of higher 8-OHdG concentrations. In addition, pH level also appears to affect the 8-OHdG formation, proven by the higher 8-OHdG concentration in samples with pH 8.4 when compared to samples with pH 7.4. In an in vivo study, a group of white rats (Rattus Norvegicus) of the Sprague Dawley strain were exposed to paraquat dichloride, Pb(II) and Fe(II) via the ingestion (oral) route for 28 days. Then urine and serum were taken every week and analyzed for the formation of 8-OHdG using ELISA KIT and LC-MS."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ghina Marsya Naziha
"Anemia gizi besi ADB merupakan permasalahan umum terutama untuk ibu hamil, menyusui, dan perempuan usia subur. Fortifikasi pangan dianggap merupakan cara yang paling sesuai untuk mengurangi ADB. Namun, fortifikasi besi secara langsung dapat menurunkan kualitas organoleptis dan memperpendek masa simpan karena besi mudah mengalami oksidasi pada kondisi pH tertentu. Metode mikroenkapsulasi dipandang sebagai metode yang tepat untuk melindungi besi pada kondisi fluida tubuh, seperti lambung dan usus halus. Untuk mendapatkan mikropartikel yang efektif dalam mengkapsulasi besi II, perlu adanya modifikasi pada polimer yang digunakan.
Pada penelitian ini akan digunakan kitosan tersalut alginat sebagai polimer dan besi II fumarat sebagai inti mikropartikel. Pembuatan mikropartikel dilakukan dengan menggunakan metode taut silang antara kitosan - sodium tripolipospat STPP 1 - besi II dengan perbandingan antara besi II dengan kitosan adalah 1:10. Kemudian mikropartikel disalut kembali dengan alginat. Metode yang digunakan adalah gelasi ionotropik antara alginat-CaCl2 sebagai penyalut kitosan, dengan variasi konsentrasi alginat adalah 0 ; 1 ; 1,5 ; dan 2.
Hasil penelitian menunjukkan efisiensi enkapsulasi terbesar terdapat pada mikropartikel tanpa alginat yaitu 75,6 dan pemuatan obat terbesar pada mikropartikel dengan alginat 1 sebesar 3,1. Penyalutan oleh alginat pada mikropartikel menyebabkan pelepasan besi lebih sedikit dibandingkan dengan mikropartikel tanpa alginat. Mikropartikel tanpa alginat menghasilkan pelepasan kumulatif yang tinggi yaitu 100 dengan pola pelepasan cepat di media pH 1,2. Seluruh mikropartikel dengan alginat menghasilkan pola pelepasan cepat dengan pelepasan kumulatif terendah pada konsentrasi alginat 1 yaitu 47,5. Hasil pengamatan pada uji pelepasan in vitro senyawa besi menunjukkan potensi formula ini digunakan sebagai obat atau suplemen dengan target sistem pencernaan.

Iron Deficiency Anemia IDA is a common problem, especially for people in groups of pregnant women, nursing woman, and women at their productive age. Food fortification is considered the most suitable way to reduce IDA. However, iron fortification can directly decrease organoleptic quality and shorten the shelf life because iron is susceptible to oxidation under certain pH conditions. The microencapsulation method is seen as an appropriate method for protecting iron in the fluid conditions of the body, such as the stomach and small intestine. To obtain an effective microparticle in encapsulating iron II, modification of polymer used is needed.
In this research chitosan coated alginate will be used as polymer and iron II fumarate as microparticle core. Microparticle preparation was performed using crosslink method between chitosan sodium tripolipospat STPP 1 iron II with ratio between iron II and chitosan was 1 10. Then the microparticles are re coated with alginate. The method used is ionotropic gelation between alginate CaCl2 as chitosan coating, with variation of alginate concentration is 0 1 1.5 and 2.
The results showed that the largest encapsulation efficiency was found in microparticles without alginate of 75.6 and the largest drug loading on microparticles with 1 alginate of 3.1. Coating microparticle with alginate causes less iron release than microparticles without alginate. Microparticle without alginate produces a high cumulative release of 100 with a rapid release pattern in pH 1.2 media. All microparticles with alginate produced a rapid release pattern with the lowest cumulative release at a 1 alginate concentration of 47.5. Observations on in vitro release test of iron compounds indicate the potential of this formula used as a drug or supplement with a target digestive system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Ekaputri Hidayat
"ABSTRACT
Tingginya input fosfor sebagai senyawa fosfat ke dalam sistem akuatik mengakibatkan eutrofikasi yang berujung pada terjadinya algae blooming. Input fosfat dalam sistem akuatik ini dicurigai dipengaruhi oleh pelepasan fosfat yang terikat pada besi(III)oksohidroksida ketika tereduksi menjadi besi(II) di sedimen. Oleh karena itu diperlukan pengukuran fosfat dan besi(II) secara simultan. Disebabkan oleh interaksi yang dinamis dari spesies fosfat di sistem alam, maka konsentrasi spesies dapat berubah pada saat penyimpanan sampel, sehingga analisis yang akurat sulit dicapai kecuali dilakukan secara in-situ. Teknik diffusive gradient in thin film (DGT) merupakan salah satu metode pengukuran in-situ yang dikembangkan untuk pengukuran fosfat dan logam. Teknik DGT diteliti menggunakan binding gel campuran TiO2-Chelex. Metode baru ini memperkenalkan penggunakan TiO2 hasil sintesis melalui metode sol-gel sebagai agen pengikat fosfat dan resin Chelex-100 sebagai agen pengikat logam Fe(II). DGT yang terdiri dari diffusive layer dan binding layer diuji kemampuannya dalam menyerap logam labil besi(II) dan fosfat secara terpisah, kemudian diuji homogenitas untuk pengukuran besi(II) dan fosfat secara simultan. DGT dengan binding gel TiO2-Chelex diuji pada sejumlah variasi waktu pengukuran, konsentrasi larutan, dan pH. Hasil analisis menggunakan AAS untuk logam besi dan Spektofotometer UV-Vis untuk fosfat menunjukkan bahwa waktu optimum untuk pengukuran DGT adalah 24 jam. DGT dengan binding gel TiO2-Chelex optimum mengukur fosfat pada larutan dengan pH 5,2 dan pH 6 dan optimum mengukur besi(II) pada pH netral (pH 7). DGT TiO2-Chelex memiliki kapasitas pengukuran 5,86 mg/L untuk fosfat dan 53,41 mg/L untuk logam besi(II).

ABSTRACT
The high phosphorus as phosphate input into aquatic systems causes eutrophication which leads to the occurrence of algae blooming. Phosphate input in aquatic systems is influenced by the release of suspected phosphate bound to iron(III) when reduced to iron(II) in the sediment. Therefore measurement of phosphate and iron(II) simultaneously is required in the environment. Due to dynamic interaction of phosphate species in the natural system, the concentration of phosphate species can change during sample storage, so that an accurate analysis difficult to achieve unless done in-situ. Diffusive gradients in thin films (DGT) technique is one of the in-situ measurement methods developed for the measurement of phosphate and metals. DGT technique has been studied using gel bindings mixture of TiO2-Chelex. This new method introduces the use of synthesized TiO2 via sol-gel method and resin Chelex-100 as phosphate and Fe(II) binding agents, respectively. DGT composed of diffusive layer and the binding layer metal was tested for their ability to absorb labile iron(II) and phosphate separately, and for homogeneity measurements of iron(II) and phosphate simultaneously. DGT with bindings Chelex gel TiO2 was tested at various time of measurement, solution concentration, and pH. The results of the analysis using AAS for iron and UV-Vis spectrophotometer for phosphate showed that the optimum time for DGT measurement is at 24 hours. Optimum measurement of DGT with bindings gel TiO2-Chelex was reached at pH around 5,2 and 6,0, and neutral (pH 7) for phosphate in solution and iron(II), respectively. TiO2-Chelex DGT measurement capacity was 5,86 mg/L and 53,41 mg/L for phosphate and iron (II), respectively."
2014
S55875
UI - Skripsi Membership  Universitas Indonesia Library
cover
Purnama Wulansari Neldy
"ABSTRAK
Seng dan besi merupakan logam yang diperlukan tubuh dalam jumlah yang sedikit. Akan tetapi, seng dan besi tidak dapat diabsorbsi dengan baik dan pengeluaran kedua logam ini dari tubuh berlangsung cepat. Penggunaan kompleks logam proteinat dapat dimanfaatkan sebagai solusi dalam mempertahankan logam agar dapat lebih baik diabsorbsi dan tidak cepat dikeluarkan dari tubuh. Pada penelitian ini dilakukan sintesis logam proteinat dengan mereaksikan senyawa logam dengan protein hasil hidrolisis enzimatis dengan enzim Pancreatin yang memiliki aktivitas protease dan analisis hasil sintesis logam proteinat. Penelitian ini bertujuan untuk mendapatkan metode sintesis dan kadar yang optimum dari logam proteinat. Logam-proteinat dibuat dengan tiga perbandingan, yaitu (0,8:1), (1:1) dan (1,2:1). Sumber protein yangg digunakan berupa kacang kedelai yang kaya akan protein dan melimpah di Indonesia. Logam yang digunakan adalah seng dan besi. Pada penelitian ini juga terdapat pemanfaatan limbah besi yang melimpah di Indonesia, yaitu untuk membuat larutan logam besi (II) klorida. Didapat hasil sintesis seng proteinat berupa serbuk coklat Pantone 4535 U dan besi (II) proteinat berupa serbuk coklat Pantone 436 C. Metode sintesis yang optimum diperoleh pada perbandingan seng-proteinat dan besi (II)-proteinat (1:1) dikarenakan pada perbandingan tersebut diperoleh rendemen tertinggi, yaitu sebesar 98,33% dan 98,56%. Analisis kadar logam dilakukan menggunakan alat Spektrofotometer Serapan Atom (SSA). Berdasarkan hasil analisis, diperoleh kadar optimum dari hasil sintesis seng-proteinat adalah pada perbandingan logam-proteinat (1:1) dan besi-proteinat (1,2:1) dikarenakan pada perbandingan tersebut diperoleh kadar logam terikat tertinggi, yaitu sebesar 17,8114 mg/g dan 6,6424 mg/g.

ABSTRACT
Zinc and iron are metal that are required in smaller quantities in our body. Despite its important role in body, zinc and iron cannot be absorbed well and excreted very quickly from our body. The use of metal proteinate complexes can be used as a solution in maintaining metal so that they can be absorbed better and not quickly excreted from the body. In this research was carried out metal proteinate synthesis by reacting metal compounds with proteins from enzymatic hydrolysis with Pancreatin enzyme which had protease activity and analysis of metal proteinate synthesis. This study aimed to obtain the optimum synthesis method and assay of metal proteinate. Metal-proteinate was made in three comparisons, namely (0.8:1), (1:1) and (1.2:1). The source of protein was soybeans which were rich in protein and abundant in Indonesia. The metals used were zinc and iron. In this study iron waste that abundant in Indonesia was utilized to make a metal solution of iron (II) chloride. The results of zinc proteinate synthesis were in the form of brown Pantone 4535 U powder and iron (II) proteinate synthesis were in the form of brown Pantone 436 C powder. The optimum synthesis method of logam-proteinate was obtained from zinc-proteinate and iron (II)-proteinate (1:1) that shown from the highest yield, which is 98.33% and 98.56%. Analysis of metal assay was carried out using Atomic Absorption Spectrophotometer (AAS). The result showed that the optimum assay of metal proteinate was obtained from zinc-proteinate (1:1) and iron (II)-proteinate (1.2:1) that shown from the highest metal assay, which is 17.8114% and 6.6424%."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library